Full text

Turn on search term navigation

© 2014 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The hypertrophic scar (HS) is a serious fibrotic skin condition and a major clinical problem. Interleukin-10 (IL-10) has been identified as a prospective scar-improving compound based on preclinical trials. Our previous work showed that IL-10 has anti-fibrotic effects in transforming growth factor (TGF)-β1-stimulated fibroblasts, as well as potential therapeutic benefits for the prevention and reduction of scar formation. However, relatively little is known about the mechanisms underlying IL-10-mediated anti-fibrotic and scar-improvement actions.

Objective

To explore the expression of the IL-10 receptor in human HS tissue and primary HS fibroblasts (HSFs), and the molecular mechanisms contributing to the anti-fibrotic and scar-improvement capabilities of IL-10.

Methods

Expression of the IL-10 receptor was assessed in HS tissue and HSFs by immunohistochemistry, immunofluorescence microscopy, and polymerase chain reaction analysis. Primary HSFs were treated with IL-10, a specific phosphatidylinositol 3 kinase (PI3K) inhibitor (LY294002) or a function-blocking antibody against the IL-10 receptor (IL-10RB). Next, Western blot analysis was used to evaluate changes in the phosphorylation status of AKT and signal transducers and activators of transcription (STAT) 3, as well as the expression levels of fibrosis-related proteins.

Results

HS tissue and primary HSFs were characterized by expression of the IL-10 receptor and by high expression of fibrotic markers relative to normal controls. Primary HSFs expressed the IL-10 receptor, while IL-10 induced AKT and STAT3 phosphorylation in these cells. In addition, LY294002 blocked AKT and STAT phosphorylation, and also up-regulated expression levels of type I and type III collagen (Col 1 and Col 3) and alpha-smooth muscle actin (α-SMA) in IL-10-treated cells. Similarly, IL-10RB reduced STAT3/AKT phosphorylation and blocked the IL-10-mediated mitigation of fibrosis in HSFs.

Conclusion

IL-10 apparently inhibits fibrosis by activating AKT and STAT3 phosphorylation downstream of the IL-10 receptor, and by facilitating crosstalk between the PI3K/AKT and STAT3 signal transduction pathways.

Details

Title
Anti-Fibrotic Actions of Interleukin-10 against Hypertrophic Scarring by Activation of PI3K/AKT and STAT3 Signaling Pathways in Scar-Forming Fibroblasts
Author
Shi, Jihong; Li, Jun; Guan, Hao; Cai, Weixia; Bai, Xiaozhi; Fang, Xiaobing; Hu, Xiaolong; Wang, Yaojun; Wang, Hongtao; Zhao, Zheng; Su, Linlin; Hu, Dahai; Zhu, Xiongxiang
First page
e98228
Section
Research Article
Publication year
2014
Publication date
May 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1530612777
Copyright
© 2014 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.