Abstract

The kinetics of CO2 uptake by the cis-[Cr(C2O4)(BaraNH2)(OH2)2]+ complex cation and the acid hydrolysis of the cis-[Cr(C2O4)(BaraNH2)OCO2]- complex anion (where BaraNH2 denotes methyl 3-amino-2,3-dideoxy-b-D-arabino-hexopyranoside) were studied using the stopped-flow technique. The reactions under study were investigated in aqueous solution in the 288-308 K temperature range. In the case of the reaction between CO2 and cis-[Cr(C2O4)(BaraNH2)(OH2)2]+ cation variable pH values (6.82-8.91) and the constant ionic strength of solution (H+, Na+, ClO4- = 1.0) were used. Carbon dioxide was generated by the reaction between sodium pyruvate and hydrogen peroxide. The acid hydrolysis of cis-[Cr(C2O4)(BaraNH2)OCO2]- was investigated for varying concentrations of H+ ions (0.01-2.7 M). The obtained results enabled the determination of the number of steps of the studied reactions. Based on the kinetic equations, rate constants were determined for each step. Finally, mechanisms for both reactions were proposed and discussed. Based on the obtained results it was concluded that the carboxylation (CO2 uptake) reactions of cis-[Cr(C2O4)(BaraNH2)(OH2)2]+ and the decarboxylation (acid hydrolysis) of the cis-[Cr(C2O4)(BaraNH2)OCO2]- are the opposite of each other.

Details

Title
Stopped-Flow Spectrophotometric Study of the Kinetics and Mechanism of CO2 Uptake by cis-[Cr(C2O4)(BaraNH2)(OH2)2]+ Cation and the Acid-Catalyzed Decomposition of cis-[Cr(C2O4)(BaraNH2)OCO2]- Anion in Aqueous Solution
Author
Jacewicz, Dagmara; Dabrowska, Aleksandra; Chmurzynski, Lech
Pages
7746-7761
Publication year
2011
Publication date
2011
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1531691947
Copyright
Copyright MDPI AG 2011