It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Density functional theory calculations found that spin density distributions of platinum clusters adsorbed on nanometer-size defective graphene patches with zigzag edges deviate strongly from those in the corresponding bare clusters, due to strong Pt-C interactions. In contrast, platinum clusters on the pristine patch have spin density distributions similar to the bare cases. The different spin density distributions come from whether underlying carbon atoms have radical characters or not. In the pristine patch, center carbon atoms do not have spin densities, and they cannot influence radical characters of the absorbed cluster. In contrast, radical characters appear on the defective sites, and thus spin density distributions of the adsorbed clusters are modulated by the Pt-C interactions. Consequently, characters of platinum clusters adsorbed on the sp2 surface can be changed by introducing vacancy-type defects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer