[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
An overview of acetaldehyde exchange above a managed temperate mountain grassland in Austria over four growing seasons is presented. The meadow acted as a net source of acetaldehyde in all 4 years, emitting between 7 and 28 mg C m-2 over the whole growing period. The cutting of the meadow resulted in huge acetaldehyde emission bursts of up to 16.5 nmol m-2 s-1 on the day of harvesting or 1 day later. During undisturbed conditions both periods with net uptake and net emissions of acetaldehyde were observed. The bidirectional nature of acetaldehyde fluxes was also reflected by clear diurnal cycles during certain time periods, indicating strong deposition processes before the first cut and emission towards the end of the growing season.
The analysis of acetaldehyde compensation points revealed a complex relationship between ambient acetaldehyde mixing ratios and respective fluxes, significantly influenced by multiple environmental parameters and variable throughout the year. As a major finding of this study, we identified both a positive and negative correlation between concentration and flux on a daily scale, where soil temperature and soil water content were the most significant factors in determining the direction of the slope. In turn, this bidirectional relationship on a daily scale resulted in compensation points between 0.40 and 0.54 ppbv, which could be well explained by collected ancillary data. We conclude that in order to model acetaldehyde fluxes at the site in Neustift on a daily scale over longer time periods, it is crucial to know the type of relationship, i.e., the direction of the slope, between mixing ratios and fluxes on a given day.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer