It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The thixotropic-like properties of saline/glycerol drops, containing biotinylated capture antibodies, on streptavidin-coated glass slides have been investigated, along with their implications for bacterial detection in a fluorescent microarray immunoassay. The thixotropic-like nature of 60:40 saline-glycerol semisolid droplets (with differing amounts of antibodies) was observed when bacteria were captured, and their presence detected using a fluorescently-labeled antibody. Semisolid, gel-like drops of biotinylated capture antibody became liquefied and moved, and then returned to semisolid state, during the normal immunoassay procedures for bacterial capture and detection. Streaking patterns were observed that indicated thixotropic-like characteristics, and this appeared to have allowed excess biotinylated capture antibody to participate in bacterial capture and detection. When developing a microarray for bacterial detection, this must be considered for optimization. For example, with the appropriate concentration of antibody (in this study, 0.125 ng/nL), spots with increased diameter at the point of contact printing (and almost no streaking) were produced, resulting in a maximal signal. With capture antibody concentrations greater than 0.125 ng/nL, the excess biotinylated capture antibody (i.e., that which was residing in the three-dimensional, semisolid droplet space above the surface) was utilized to capture more bacteria. Similarly, when the immunoassay was performed within a hydrophobic barrier (i.e., without a coverslip), brighter spots with increased signal were observed. In addition, when higher concentrations of cells (~108 cells/mL) were available for capture, the importance of unbound capture antibody in the semisolid droplets became apparent because washing off the excess, unbound biotinylated capture antibody before the immunoassay was performed reduced the signal intensity by nearly 50%. This reduction in signal was not observed with lower concentrations of cells (~106 cells/mL). With increased volumes of capture antibody, abnormal spots were visualized, along with decreased signal intensity, after bacterial detection, indicating that the increased droplet volume detrimentally affected the immunoassay.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer