It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a study and a comparison of the use of different information-theoretic measures for polygonal mesh simplification. Generalized measures from Information Theory such as Havrda-Charvát-Tsallis entropy and mutual information have been applied. These measures have been used in the error metric of a surfaces implification algorithm. We demonstrate that these measures are useful for simplifying three-dimensional polygonal meshes. We have also compared these metrics with the error metrics used in a geometry-based method and in an image-driven method. Quantitative results are presented in the comparison using the root-mean-square error (RMSE).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer