It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 597
Abstract
Background: It has been hypothesised that light skin pigmentation has arisen to ensure adequate levels of vitamin D as human populations moved out of Africa and into higher latitudes. Vitamin D, which is primarily obtained through exposure to sunlight (specifically ultraviolet radiation B (UVR-B)), has been inversely associated with several complex diseases. Greater sun exposure, on the other hand, is a well-known cause of skin cancer. The potential of UVR to be beneficial for some health outcomes but detrimental for others has prompted a public health debate on how to balance the positive and negative consequences of sun exposure. In this study we aimed to determine the validity of the evolutionary hypothesis linking lighter skin with higher vitamin D concentrations in a European population. Additionally, we aimed to examine the influence of pigmentation on personal behaviour towards sunlight exposure and the effects of this behaviour on vitamin D.
Methods: We combined genetic variants strongly associated with skin colour, tanning or freckling to create genetic scores for each of these phenotypes. We examined the association of the scores with pigmentary traits, sun exposure and serum 25-hydroxyvitamin D (25(OH)D) levels among children of the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 661 to 5649).
Results: We found that fairer-skinned children, i.e. those with higher pigmentation score values, had higher levels of 25(OH)D (0.6 nmol/l; 95% CI 0.2, 1.0; per unit increase in skin colour score; N = 5649). These children also used more protection against the damaging effects of UVR.
Conclusions: In this population taking protective measures against sunburn and skin cancer does not seem to remove the positive effect that having a less pigmented skin has on vitamin D production. Our findings require further replication as skin pigmentation showed only a small effect on circulating 25(OH)D.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer