Full text

Turn on search term navigation

© 2014 Chauhan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train, and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/ntegfr/) will play a vital role in designing new anticancer drugs.

Details

Title
QSAR-Based Models for Designing Quinazoline/Imidazothiazoles/Pyrazolopyrimidines Based Inhibitors against Wild and Mutant EGFR
Author
Jagat Singh Chauhan; Dhanda, Sandeep Kumar; Singla, Deepak; Open Source Drug Discovery Consortium; Agarwal, Subhash M; Gajendra P S Raghava
First page
e101079
Section
Research Article
Publication year
2014
Publication date
Jul 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1542870679
Copyright
© 2014 Chauhan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.