[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
The use of non-systematic flood data for statistical purposes depends on the reliability of the assessment of both flood magnitudes and their return period. The earliest known extreme flood year is usually the beginning of the historical record. Even if one properly assesses the magnitudes of historic floods, the problem of their return periods remains unsolved. The matter at hand is that only the largest flood (XM) is known during whole historical period and its occurrence marks the beginning of the historical period and defines its length (L). It is common practice to use the earliest known flood year as the beginning of the record. It means that the L value selected is an empirical estimate of the lower bound on the effective historical length M. The estimation of the return period of XM based on its occurrence (L), i.e. ^M = L, gives a severe upward bias. The problem arises that to estimate the time period (M) representative of the largest observed flood XM.
From the discrete uniform distribution with support 1, 2, ... , M of the probability of the L position of XM, one gets ^L = M/2. Therefore ^M = 2L has been taken as the return period of XM and as the effective historical record length as well this time. As in the systematic period (N) all its elements are smaller than XM, one can get ^M
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer