It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 97
Abstract
Background: Biodiesel production from marine microalgae has received much attention as microalgae can be cultivated on non-arable land without the use of potable water, and with the additional benefits of mitigating CO2 emissions and yielding biomass. However, there is still a lack of effective operational strategies to promote lipid accumulation in marine microalgae, which are suitable for making biodiesel since they are mainly composed of saturated and monounsaturated fatty acids. Moreover, the regulatory mechanisms involved in lipid biosynthesis in microalgae under environmental stress are not well understood.
Results: In this work, the combined effects of salinity and nitrogen depletion stresses on lipid accumulation of a newly isolated marine microalga, Chlamydomonas sp. JSC4, were explored. Metabolic intermediates were profiled over time to observe transient changes during the lipid accumulation triggered by the combination of the two stresses. An innovative cultivation strategy (denoted salinity-gradient operation) was also employed to markedly improve the lipid accumulation and lipid quality of the microalga, which attained an optimal lipid productivity of 223.2 mg L-1 d-1 and a lipid content of 59.4% per dry cell weight. This performance is significantly higher than reported in most related studies.
Conclusions: This work demonstrated the synergistic integration of biological and engineering technologies to develop a simple and effective strategy for the enhancement of oil production in marine microalgae.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer