It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using 1000 successive points of a pulse wave velocity (PWV) series, we previously distinguished healthy from diabetic subjects with multi-scale entropy (MSE) using a scale factor of 10. One major limitation is the long time for data acquisition (i.e., 20 min). This study aimed at validating the sensitivity of a novel method, short time MSE (sMSE) that utilized a substantially smaller sample size (i.e., 600 consecutive points), in differentiating the complexity of PWV signals both in simulation and in human subjects that were divided into four groups: healthy young (Group 1; n = 24) and middle-aged (Group 2; n = 30) subjects without known cardiovascular disease and middle-aged individuals with well-controlled (Group 3; n = 18) and poorly-controlled (Group 4; n = 22) diabetes mellitus type 2. The results demonstrated that although conventional MSE could differentiate the subjects using 1000 consecutive PWV series points, sensitivity was lost using only 600 points. Simulation study revealed consistent results. By contrast, the novel sMSE method produced significant differences in entropy in both simulation and testing subjects. In conclusion, this study demonstrated that using a novel sMSE approach for PWV analysis, the time for data acquisition can be substantially reduced to that required for 600 cardiac cycles (~10 min) with remarkable preservation of sensitivity in differentiating among healthy, aged, and diabetic populations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer