Full Text

Turn on search term navigation

© 2014 Kiss et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury.

Purpose

The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms.

Methods

Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above.

Results

Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes.

Conclusion

Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.

Details

Title
The Role of Arginase and Rho Kinase in Cardioprotection from Remote Ischemic Perconditioning in Non-Diabetic and Diabetic Rat In Vivo
Author
Kiss, Attila; Tratsiakovich, Yahor; Gonon, Adrian T; Fedotovskaya, Olga; Lanner, Johanna T; Andersson, Daniel C; Yang, Jiangning; Pernow, John
First page
e104731
Section
Research Article
Publication year
2014
Publication date
Aug 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1554982617
Copyright
© 2014 Kiss et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.