Full text

Turn on search term navigation

© 2014 Hutchins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

Details

Title
Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms
Author
Hutchins, Elizabeth D; Markov, Glenn J; Eckalbar, Walter L; George, Rajani M; King, Jesse M; Tokuyama, Minami A; Geiger, Lauren A; Emmert, Nataliya; Ammar, Michael J; Allen, April N; Siniard, Ashley L; Corneveaux, Jason J; Fisher, Rebecca E; Wade, Juli; DeNardo, Dale F; Rawls, J Alan; Huentelman, Matthew J; Wilson-Rawls, Jeanne; Kusumi, Kenro
First page
e105004
Section
Research Article
Publication year
2014
Publication date
Aug 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1554982901
Copyright
© 2014 Hutchins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.