Abstract

Doc number: 549

Abstract

Background: Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans.

Results: The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus.

Conclusions: The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans , A. melanogenum , A. subglaciale and A. namibiae . The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

Details

Title
Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species
Author
Gostincar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1555155669
Copyright
© 2014 Gostincar et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.