Abstract

Doc number: 106

Abstract

Background: Sepsis is a common disease that continues to increase in incidence in the world. Diseases, such as diabetes mellitus, may make the situation worse. Diabetic patients are at increased risk for common infections. This study was designed to investigate the role of glibenclamide on myocardial injury by lipopolysaccharides (LPS) in streptozotocin induced diabetic mice (STZ-mice).

Methods: LPS was used to induce endotoxemia in STZ-mice. Heart rate and mean arterial pressure were measured by MPA-HBBS. Serum epinephrine level was measured by enzyme-linked immunosorbent assays (ELISA). Myocardial injury was examined by light and transmission electron microscope and TUNEL staining. Macrophage infiltration was measured by immunohistochemistry. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in myocardial tissue and serum in STZ-mice, and in conditional medium of primary cultured peritoneal macrophages were determined by ELISA. Nalp3 and Caspase-1 protein levels were measured by Western blotting analysis.

Results: STZ administration decreased body weight and increased blood glucose in C57BL/6 mice. LPS injection caused decreases of heart rate and mean arterial pressure, and elevated serum epinephrine level in C57BL/6 mice. Compared with control mice without STZ treatment, LPS induced more severe myocardial injury and macrophage infiltration in STZ-mice, which was attenuated by pretreatment of glibenclamide. LPS stimulation enhanced the levels of IL-1β and TNF-α in both cardiac tissue and serum. Glibenclamide pretreatment significantly inhibited the serum levels of pro-inflammatory cytokines. Either high glucose or LPS increased the levels of IL-1β and TNF-α in the conditional medium of peritoneal macrophages. Glibenclamide treatment suppressed the increase of IL-1β level induced by high glucose and LPS. Furthermore, Nalp3 and Caspase-1 levels were markedly increased by high glucose plus LPS, and both proteins were significantly inhibited by glibenclamide treatment.

Conclusions: We conclude that glibenclamide could attenuate myocardial injury induced by LPS challenge in STZ-mice, which was possibly related to inhibiting inflammation through Nalp3 inflammasomes.

Details

Title
Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice
Author
Cai, Jian; Lu, Shuai; Yao, Zheng; Deng, Ya-Ping; Zhang, Ling-Di; Yu, Jia-Wen; Ren, Guo-Fei; Shen, Fu-Ming; Jiang, Guo-Jun
Pages
106
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
14752840
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1557788281
Copyright
© 2014 Jian et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.