[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
This study investigates how warming and changes in precipitation may affect the cycling of carbon (C) in tundra soils, and between high Arctic tundra and the atmosphere. We quantified ecosystem respiration (Reco ) and soil pore space CO2 in a polar semi-desert in northwestern Greenland under current and future climate conditions simulated by long-term experimental warming (+2 °C, +4 °C), water addition (+50% summer precipitation), and a combination of both (+4 °C × +50% summer precipitation). We also measured the 14 C content of Reco and soil CO2 to distinguish young C cycling rapidly between the atmosphere and the ecosystem from older C stored in the soil for centuries to millennia.
We identified changes in the amount and timing of precipitation as a key control of the magnitude, seasonality and sources of Reco in a polar semi-desert. Throughout each summer, small (<4 mm) precipitation events during drier periods triggered the release of very old C pulses from the deep soil, while larger precipitation events (>4 mm), more winter snow and experimental irrigation were associated with higher Reco fluxes and the release of recently fixed (young) C. Warmer summers and experimental warming also resulted in higher Reco fluxes (+2 °C > +4 °C), but coincided with losses of older C.
We conclude that in high Arctic, dry tundra systems, future magnitudes and patterns of old C emissions will be controlled as much by the summer precipitation regime and winter snowpack as by warming. The release of older soil C is of concern, as it may lead to net C losses from the ecosystem. Therefore, reliable predictions of precipitation amounts, frequency, and timing are required to predict the changing C cycle in the high Arctic.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer