[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
The accuracy of morphological predictions is generally measured by an overall point-wise metric, such as the mean-squared difference between pairs of predicted and observed bed levels. Unfortunately, point-wise accuracy metrics tend to favour featureless predictions over predictions whose features are (slightly) misplaced. From the perspective of a coastal morphologist, this may lead to wrong decisions as to which of two predictions is better. In order to overcome this inherent limitation of point-wise metrics, we propose a new diagnostic tool for 2-D morphological predictions, which explicitly takes (dis)agreement in spatial patterns into account. Our approach is to formulate errors based on a smooth displacement field between predictions and observations that minimizes the point-wise error. We illustrate the advantages of this approach using a variety of morphological fields, generated with Delft3D, for an idealized case of a tidal inlet developing from an initially very schematized geometry. The quantification of model performance by the new diagnostic tool is found to better reflect the qualitative judgement of experts than traditional point-wise metrics do.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer