Full text

Turn on search term navigation

© 2014 Oh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected by SOX9 and used SOX9 ChIP-Seq to identify those genes that harbor SOX9-interaction sites. For RNA-Seq, the RNA expression profile of primary Sox9flox/flox mouse chondrocytes infected with Ad-CMV-Cre was compared with that of the same cells infected with a control adenovirus. Analysis of RNA-Seq data indicated that, when the levels of Sox9 mRNA were decreased more than 8-fold by infection with Ad-CMV-Cre, 196 genes showed a decrease in expression of at least 4-fold. These included many cartilage extracellular matrix (ECM) genes and a number of genes for ECM modification enzymes (transferases), membrane receptors, transporters, and others. In ChIP-Seq, 75% of the SOX9-interaction sites had a canonical inverted repeat motif within 100 bp of the top of the peak. SOX9-interaction sites were found in 55% of the genes whose expression was decreased more than 8-fold in SOX9-depleted cells and in somewhat fewer of the genes whose expression was reduced more than 4-fold, suggesting that these are direct targets of SOX9. The combination of RNA-Seq and ChIP-Seq has provided a fuller understanding of the SOX9-controlled genetic program of chondrocytes.

Details

Title
SOX9 Regulates Multiple Genes in Chondrocytes, Including Genes Encoding ECM Proteins, ECM Modification Enzymes, Receptors, and Transporters
Author
Chun-do, Oh; Lu, Yue; Liang, Shoudan; Mori-Akiyama, Yuko; Chen, Di; Benoit de Crombrugghe; Yasuda, Hideyo
First page
e107577
Section
Research Article
Publication year
2014
Publication date
Sep 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1562654066
Copyright
© 2014 Oh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.