It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 734
Abstract
Background: Intracellular zinc concentration needs to be maintained within strict limits due to its toxicity at high levels, and this is achieved by a finely regulated balance between uptake and efflux. Many bacteria use the Zinc Uptake Regulator Zur to orchestrate zinc homeostasis, but little is known regarding the transport of this metal across the bacterial outer membrane.
Results: In this work we determined the Caulobacter crescentus Zur regulon by global transcriptional and in silico analyses. Among the genes directly repressed by Zur in response to zinc availability are those encoding a putative high affinity ABC uptake system (znuGHI ), three TonB-dependent receptors (znuK , znuL and znuM ) and one new putative transporter of a family not yet characterized (zrpW ). Zur is also directly involved in the activation of a RND and a P-type ATPase efflux systems, as revealed by β-galactosidase and site-directed mutagenesis assays. Several genes belonging to the Fur regulon were also downregulated in the zur mutant, suggesting a putative cross-talk between Zur and Fur regulatory networks. Interestingly, a phenotypic analysis of the znuK and znuL mutants has shown that these genes are essential for growth under zinc starvation, suggesting that C. crescentus uses these TonB-dependent outer membrane transporters as key zinc scavenging systems.
Conclusions: The characterization of the C. crescentus Zur regulon showed that this regulator coordinates not only uptake, but also the extrusion of zinc. The uptake of zinc by C. crescentus in conditions of scarcity of this metal is highly dependent on TonB-dependent receptors, and the extrusion is mediated by an RND and P-type ATPase transport systems. The absence of Zur causes a disturbance in the dynamic equilibrium of zinc intracellular concentration, which in turn can interfere with other regulatory networks as seen for the Fur regulon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer