[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
Hydrological classification has emerged as a suitable procedure to disentangle the inherent hydrological complexity of river networks. This practice has contributed to determining key biophysical relations in fluvial ecosystems and the effects of flow modification. Thus, a plethora of classification approaches, which agreed in general concepts and methods but differed largely in specific procedures, have emerged in the last decades. However, few studies have compared the implication of applying contrasting approaches and specifications over the same hydrological data. In this work, using cluster analysis and modelling approaches, we classify the entire river network covering the northern third of the Iberian Peninsula. Specifically, we developed classifications of increasing level of detail, ranging from 2 to 20 class levels, either based on raw and normalized daily flow series and using two contrasting approaches to determine class membership: classify-then-predict (ClasF) and predict-then-classify (PredF). Classifications were compared in terms of their statistical strength, the hydrological interpretation, the ability to reduce the bias associated with underrepresented parts of the hydrological space and their spatial correspondnece. The results highlighted that both the data processing and the classification strategy largely influenced the classification outcomes and properties, although differences among procedures were not always statistically significant. The normalization of flow data removed the influence of flow magnitude and generated more complex classifications in which a wider range of hydrologic characteristics were considered. The application of the PredF strategy produced, in most of the cases, classifications with higher discrimination ability and presented greater ability to deal with the presence of distinctive gauges in the data set than using the ClasF strategy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer