Full Text

Turn on search term navigation

Copyright Nature Publishing Group Oct 2014

Abstract

Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation.

Details

Title
Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy
Author
Stoica, Gm; Stoica, Ad; Miller, Mk; Ma, D
Pages
5178
Publication year
2014
Publication date
Oct 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1609513902
Copyright
Copyright Nature Publishing Group Oct 2014