Full text

Turn on search term navigation

© 2014 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER) stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR) and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE) of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1–10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1) by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1) and intracellular adhesion molecule-1 (ICAM-1) was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

Details

Title
Purple Perilla Extracts Allay ER Stress in Lipid-Laden Macrophages
Author
Park, Sin-Hye; Shin, Daekeun; Soon Sung Lim; Jae-Yong, Lee; Young-Hee, Kang
First page
e110581
Section
Research Article
Publication year
2014
Publication date
Oct 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1612297745
Copyright
© 2014 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.