Full Text

Turn on search term navigation

© 2014 Arango-Gonzalez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.

Details

Title
Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration
Author
Arango-Gonzalez, Blanca; Trifunović, Dragana; Sahaboglu, Ayse; Kranz, Katharina; Michalakis, Stylianos; Farinelli, Pietro; Koch, Susanne; Koch, Fred; Cottet, Sandra; Janssen-Bienhold, Ulrike; Dedek, Karin; Biel, Martin; Eberhart Zrenner; Euler, Thomas; Ekström, Per; Ueffing, Marius; Paquet-Durand, François
First page
e112142
Section
Research Article
Publication year
2014
Publication date
Nov 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1624949166
Copyright
© 2014 Arango-Gonzalez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.