It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The paper presents data mining methods applied to gene selection for recognition of a particular type of prostate cancer on the basis of gene expression arrays. Several chosen methods of gene selection, including the Fisher method, correlation of gene with a class, application of the support vector machine and statistical hypotheses, are compared on the basis of clustering measures. The results of applying these individual selection methods are combined together to identify the most often selected genes forming the required pattern, best associated with the cancerous cases. This resulting pattern of selected gene lists is treated as the input data to the classifier, performing the task of the final recognition of the patterns. The numerical results of the recognition of prostate cancer from normal (reference) cases using the selected genes and the support vector machine confirm the good performance of the proposed gene selection approach
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer