Abstract

Doc number: 989

Abstract

Background: Viruses have unique properties, small genome and regions of high similarity, whose effects on metagenomic assemblies have not been characterized so far. This study uses diverse in silico simulated viromes to evaluate how extensively genomes can be assembled using different sequencing platforms and assemblers. Further, it investigates the suitability of different methods to estimate viral diversity in metagenomes.

Results: We created in silico metagenomes mimicking various platforms at different sequencing depths. The CLC assembler revealed subpar compared to IDBA_UD and CAMERA , which are metagenomic-specific. Up to a saturation point, Illumina platforms proved more capable of reconstructing large portions of viral genomes compared to 454. Read length was an important factor for limiting chimericity, while scaffolding marginally improved contig length and accuracy. The genome length of the various viruses in the metagenomes did not significantly affect genome reconstruction, but the co-existence of highly similar genomes was detrimental. When evaluating diversity estimation tools, we found that PHACCS results were more accurate than those from CatchAll and clustering, which were both orders of magnitude above expected.

Conclusions: Assemblers designed specifically for the analysis of metagenomes should be used to facilitate the creation of high-quality long contigs. Despite the high coverage possible, scientists should not expect to always obtain complete genomes, because their reconstruction may be hindered by co-existing species bearing highly similar genomic regions. Further development of metagenomics-oriented assemblers may help bypass these limitations in future studies. Meanwhile, the lack of fully reconstructed communities keeps methods to estimate viral diversity relevant. While none of the three methods tested had absolute precision, only PHACCS was deemed suitable for comparative studies.

Details

Title
Evaluation of viral genome assembly and diversity estimation in deep metagenomes
Author
Aguirre de Cárcer, Daniel; Angly, Florent E; Alcamí, Antonio
Pages
n/a
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1628380204
Copyright
© 2014 Aguirre de Cárcer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.