Full Text

Turn on search term navigation

Copyright Nature Publishing Group Dec 2014

Abstract

Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2 (As1-x Px )2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.

Details

Title
Anomalous critical fields in quantum critical superconductors
Author
Putzke, C; Walmsley, P; Fletcher, J D; Malone, L; Vignolles, D; Proust, C; Badoux, S; See, P; Beere, H E; Ritchie, D A; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A
Pages
5679
Publication year
2014
Publication date
Dec 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1630375435
Copyright
Copyright Nature Publishing Group Dec 2014