Full text

Turn on search term navigation

Copyright Nature Publishing Group Dec 2014

Abstract

Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 × 65 × 3.5 μm3 without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang.

Details

Title
Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging
Author
Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia L; Sandoz, Patrick A; Huss, Anja; Jensen, Nickels A; Jakobs, Stefan; Enderlein, Jörg; Gisou Van Der Goot, F; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel
Pages
5830
Publication year
2014
Publication date
Dec 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1637574682
Copyright
Copyright Nature Publishing Group Dec 2014