[A & I plus PDF only]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy moth (Lymantria dispar L.) or burned using prescribed fire. Before disturbance, half-hourly daytime NEE during full sunlight conditions, daily GEP, and daily WUEe during the summer months were greater at the oak-dominated stand compared to the mixed or pine-dominated stands. Both defoliation by gypsy moth and prescribed burning reduced stand leaf area and nitrogen mass in foliage. During complete defoliation in 2007 at the oak stand, NEE during full sunlight conditions and daily GEP during the summer averaged only 14 and 35% of pre-disturbance values. Midday NEE and daily GEP then averaged 58 and 85%, and 71 and 78% of pre-defoliation values 1 and 2 years following complete defoliation, respectively. Prescribed fires conducted in the dormant season at the mixed and pine-dominated stands reduced NEE during full sunlight conditions and daily GEP during the following summer to 57 and 68%, and 79 and 82% of pre-disturbance values, respectively. Daily GEP during the summer was a strong function of N mass in foliage at the oak and mixed stands, but a weaker function of N in foliage at the pine-dominated stand. Ecosystem WUEe during the summer at the oak and mixed stands during defoliation by gypsy moth averaged 1.6 and 1.1 g C kg H2O-1, representing 60 and 46% of pre-disturbance values. In contrast, prescribed fires at the mixed and pine-dominated stands had little effect on WUEe. Two years following complete defoliation by gypsy moth, WUEe during the summer averaged 2.1 g C kg H2O-1, 80% of pre-disturbance values. WUEe was correlated with canopy N content only at the oak-dominated stand. Overall, our results indicate that WUEe during and following non-stand replacing disturbance is dependent on both the type and time since disturbance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer