Full text

Turn on search term navigation

Copyright © 2014 Erik Cuevas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

System identification is a complex optimization problem which has recently attracted the attention in the field of science and engineering. In particular, the use of infinite impulse response (IIR) models for identification is preferred over their equivalent FIR (finite impulse response) models since the former yield more accurate models of physical plants for real world applications. However, IIR structures tend to produce multimodal error surfaces whose cost functions are significantly difficult to minimize. Evolutionary computation techniques (ECT) are used to estimate the solution to complex optimization problems. They are often designed to meet the requirements of particular problems because no single optimization algorithm can solve all problems competitively. Therefore, when new algorithms are proposed, their relative efficacies must be appropriately evaluated. Several comparisons among ECT have been reported in the literature. Nevertheless, they suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. This study presents the comparison of various evolutionary computation optimization techniques applied to IIR model identification. Results over several models are presented and statistically validated.

Details

Title
A Comparison of Evolutionary Computation Techniques for IIR Model Identification
Author
Cuevas, Erik; Galvez, Jorge; Hinojosa, Salvador; Avalos, Omar; Zaldivar, Daniel; Perez-Cisneros, Marco
Publication year
2014
Publication date
2014
Publisher
John Wiley & Sons, Inc.
ISSN
1110757X
e-ISSN
16870042
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1641807596
Copyright
Copyright © 2014 Erik Cuevas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.