Full text

Turn on search term navigation

© 2015 Laffont et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cytokinins are phytohormones that regulate many developmental and environmental responses. The Medicago truncatula cytokinin receptor MtCRE1 (Cytokinin Response 1) is required for the nitrogen-fixing symbiosis with rhizobia. As several cytokinin signaling genes are modulated in roots depending on different biotic and abiotic conditions, we assessed potential involvement of this pathway in various root environmental responses. Phenotyping of cre1 mutant roots infected by the Gigaspora margarita arbuscular mycorrhizal (AM) symbiotic fungus, the Aphanomyces euteiches root oomycete, or subjected to an abiotic stress (salt), were carried out. Detailed histological analysis and quantification of cre1 mycorrhized roots did not reveal any detrimental phenotype, suggesting that MtCRE1 does not belong to the ancestral common symbiotic pathway shared by rhizobial and AM symbioses. cre1 mutants formed an increased number of emerged lateral roots compared to wild-type plants, a phenotype which was also observed under non-stressed conditions. In response to A. euteiches, cre1 mutants showed reduced disease symptoms and an increased plant survival rate, correlated to an enhanced formation of lateral roots, a feature previously linked to Aphanomyces resistance. Overall, we showed that the cytokinin CRE1 pathway is not only required for symbiotic nodule organogenesis but also affects both root development and resistance to abiotic and biotic environmental stresses.

Details

Title
The CRE1 Cytokinin Pathway Is Differentially Recruited Depending on Medicago truncatula Root Environments and Negatively Regulates Resistance to a Pathogen
Author
Laffont, Carole; Rey, Thomas; Olivier André; Novero, Mara; Kazmierczak, Théophile; Debellé, Frédéric; Bonfante, Paola; Jacquet, Christophe; Frugier, Florian
First page
e0116819
Section
Research Article
Publication year
2015
Publication date
Jan 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1642633535
Copyright
© 2015 Laffont et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.