Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jan 2015

Abstract

The metal-insulator transition is one of the remarkable electrical properties of atomically thin molybdenum disulphide. Although the theory of electron-electron interactions has been used in modelling the metal-insulator transition in molybdenum disulphide, the underlying mechanism and detailed transition process still remain largely unexplored. Here we demonstrate that the vertical metal-insulator-semiconductor heterostructures built from atomically thin molybdenum disulphide are ideal capacitor structures for probing the electron states. The vertical configuration offers the added advantage of eliminating the influence of large impedance at the band tails and allows the observation of fully excited electron states near the surface of molybdenum disulphide over a wide excitation frequency and temperature range. By combining capacitance and transport measurements, we have observed a percolation-type metal-insulator transition, driven by density inhomogeneities of electron states, in monolayer and multilayer molybdenum disulphide. In addition, the valence band of thin molybdenum disulphide layers and their intrinsic properties are accessed.

Details

Title
Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures
Author
Chen, Xiaolong; Wu, Zefei; Xu, Shuigang; Wang, Lin; Huang, Rui; Han, Yu; Ye, Weiguang; Xiong, Wei; Han, Tianyi; Long, Gen; Wang, Yang; He, Yuheng; Cai, Yuan; Sheng, Ping; Wang, Ning
Pages
6088
Publication year
2015
Publication date
Jan 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1645227966
Copyright
Copyright Nature Publishing Group Jan 2015