Full text

Turn on search term navigation

Copyright Nature Publishing Group Jan 2015

Abstract

Monolayer transition metal dichalcogenides are materials with an atomic structure complementary to graphene but diverse properties, including direct energy bandgaps, which makes them intriguing candidates for optoelectronic devices. Various approaches have been demonstrated for the growth of molybdenum disulphide (MoS2 ) on insulating substrates, but to date, growth of isolated crystalline flakes has been demonstrated at random locations only. Here we use patterned seeds of molybdenum source material to grow flakes of MoS2 at predetermined locations with micrometre-scale resolution. MoS2 flakes are predominantly monolayers with high material quality, as confirmed by atomic force microscopy, transmission electron microscopy and Raman and photoluminescence spectroscopy. As the monolayer flakes are isolated at predetermined locations, transistor fabrication requires only a single lithographic step. Device measurements exhibit carrier mobility and on/off ratio that exceed 10 cm2 V-1 s-1 and 106 , respectively. The technique provides a path for in-depth physical analysis of monolayer MoS2 and fabrication of MoS2 -based integrated circuits.

Details

Title
Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations
Author
Han, Gang Hee; Kybert, Nicholas J; Naylor, Carl H; Lee, Bum Su; Ping, Jinglei; Park, Joo Hee; Kang, Jisoo; Lee, Si Young; Lee, Young Hee; Agarwal, Ritesh; Johnson, A T Charlie
Pages
6128
Publication year
2015
Publication date
Jan 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1648594179
Copyright
Copyright Nature Publishing Group Jan 2015