Full Text

Turn on search term navigation

Copyright Nature Publishing Group Feb 2015

Abstract

Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500-3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip.

Details

Title
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
Author
Kuyken, Bart; Ideguchi, Takuro; Holzner, Simon; Yan, Ming; Hänsch, Theodor W; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picqué, Nathalie
Pages
6310
Publication year
2015
Publication date
Feb 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1656321598
Copyright
Copyright Nature Publishing Group Feb 2015