Full text

Turn on search term navigation

Copyright © 2015 Fathima Shaffra Refai et al. Fathima Shaffra Refai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) have been known to be a major genetic component affecting Parkinson's disease (PD). However, the pathogenicity of many of the LRRK2 variants is unclear because they have been detected in single patients or also in patients and controls. Here, we selected 5 exonic variants (L1165P, T1410M, M1646T, L2063X, and Y2189C) from each of the protein domain of LRRK2 and analysed their possible association with pathogenicity using in vitro functional assays. Point mutations representing each of these variants were incorporated into the LRRK2 gene, and functional aspects such as the percentage of cell survival upon application of stress and kinase activity were measured. Our results showed that all 5 variants had a significantly negative effect on the survival of cells, in both presence and absence of stress, as compared to the wild-type. In addition, there was also a slight increase in kinase activity in most of the variants in comparison to the wild-type. A negative correlation between cell survival and kinase activity was observed. These data suggest that most of the variants despite being located in different domains of LRRK2 appear to exert a potential pathogenic effect possibly through an increased kinase activity, supporting a gain of function mechanism.

Details

Title
Evaluating LRRK2 Genetic Variants with Unclear Pathogenicity
Author
Refai, Fathima Shaffra; Shin Hui Ng; Eng-King, Tan
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
23146133
e-ISSN
23146141
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1663495397
Copyright
Copyright © 2015 Fathima Shaffra Refai et al. Fathima Shaffra Refai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.