Full text

Turn on search term navigation

Copyright Nature Publishing Group Mar 2015

Abstract

Since topological insulators were theoretically predicted and experimentally observed in semiconductors with strong spin-orbit coupling, increasing attention has been drawn to topological materials that host exotic surface states. These surface excitations are stable against perturbations since they are protected by global or spatial/lattice symmetries. Following the success in achieving various topological insulators, a tempting challenge now is to search for metallic materials with novel topological properties. Here we predict that orthorhombic perovskite iridates realize a new class of metals dubbed topological crystalline metals, which support zero-energy surface states protected by certain lattice symmetry. These surface states can be probed by photoemission and tunnelling experiments. Furthermore, we show that by applying magnetic fields, the topological crystalline metal can be driven into other topological metallic phases, with different topological properties and surface states.

Details

Title
Topological crystalline metal in orthorhombic perovskite iridates
Author
Chen, Yige; Lu, Yuan-ming; Kee, Hae-young
Pages
6593
Publication year
2015
Publication date
Mar 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1663678691
Copyright
Copyright Nature Publishing Group Mar 2015