Full Text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF) as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

Details

Title
Proliferation of Cultured Mouse Choroid Plexus Epithelial Cells
Author
Barkho, Basam Z; Monuki, Edwin S
First page
e0121738
Section
Research Article
Publication year
2015
Publication date
Mar 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1667159359
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.