Full text

Turn on search term navigation

© 2015 Zhang, Ni. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and objectives

Acute respiratory distress syndrome (ARDS) is a major cause respiratory failure in intensive care unit (ICU). Early recognition of patients at high risk of death is of vital importance in managing them. The aim of the study was to establish a prediction model by using variables that were readily available in routine clinical practice.

Methods

The study was a secondary analysis of data obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center. Patients were enrolled between August 2007 and July 2008 from 33 hospitals. Demographics and laboratory findings were extracted from dataset. Univariate analyses were performed to screen variables with p<0.3. Then these variables were subject to automatic stepwise forward selection with significance level of 0.1. Interaction terms and fractional polynomials were examined for variables in the main effect model. Multiple imputations and bootstraps procedures were used to obtain estimations of coefficients with better external validation. Overall model fit and logistic regression diagnostics were explored.

Main result

A total of 282 ARDS patients were included for model development. The final model included eight variables without interaction terms and non-linear functions. Because the variable coefficients changed substantially after exclusion of most poorly fitted and influential subjects, we estimated the coefficient after exclusion of these outliers. The equation for the fitted model was: g(Χ)=0.06×age(in years)+2.23(if on vasopressor)+1.37×potassium (mmol/l)-0.007×platelet count (×109)+0.03×heart rate (/min)-0.29×Hb(g/dl)-0.67×T(°C)+0.01×PaO_2+13, and the probability of death π(Χ)=eg(Χ)/(1+eg(Χ)).

Conclusion

The study established a prediction model for ARDS patients requiring mechanical ventilation. The model was examined with rigorous methodology and can be used for risk stratification in ARDS patients.

Details

Title
Prediction Model for Critically Ill Patients with Acute Respiratory Distress Syndrome
Author
Zhang, Zhongheng; Ni, Hongying
First page
e0120641
Section
Research Article
Publication year
2015
Publication date
Mar 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1667659196
Copyright
© 2015 Zhang, Ni. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.