Full text

Turn on search term navigation

© 2015 Yoshino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Chagas disease, caused by the parasite Trypanosoma cruzi, is a neglected tropical disease that causes severe human health problems. To develop a new chemotherapeutic agent for the treatment of Chagas disease, we predicted a pharmacophore model for T. cruzi dihydroorotate dehydrogenase (TcDHODH) by fragment molecular orbital (FMO) calculation for orotate, oxonate, and 43 orotate derivatives.

Methodology/Principal Findings

Intermolecular interactions in the complexes of TcDHODH with orotate, oxonate, and 43 orotate derivatives were analyzed by FMO calculation at the MP2/6-31G level. The results indicated that the orotate moiety, which is the base fragment of these compounds, interacts with the Lys43, Asn67, and Asn194 residues of TcDHODH and the cofactor flavin mononucleotide (FMN), whereas functional groups introduced at the orotate 5-position strongly interact with the Lys214 residue.

Conclusions/Significance

FMO-based interaction energy analyses revealed a pharmacophore model for TcDHODH inhibitor. Hydrogen bond acceptor pharmacophores correspond to Lys43 and Lys214, hydrogen bond donor and acceptor pharmacophores correspond to Asn67 and Asn194, and the aromatic ring pharmacophore corresponds to FMN, which shows important characteristics of compounds that inhibit TcDHODH. In addition, the Lys214 residue is not conserved between TcDHODH and human DHODH. Our analysis suggests that these orotate derivatives should preferentially bind to TcDHODH, increasing their selectivity. Our results obtained by pharmacophore modeling provides insight into the structural requirements for the design of TcDHODH inhibitors and their development as new anti-Chagas drugs.

Details

Title
Pharmacophore Modeling for Anti-Chagas Drug Design Using the Fragment Molecular Orbital Method
Author
Yoshino, Ryunosuke; Yasuo, Nobuaki; Inaoka, Daniel Ken; Hagiwara, Yohsuke; Ohno, Kazuki; Orita, Masaya; Inoue, Masayuki; Shiba, Tomoo; Harada, Shigeharu; Honma, Teruki; Emmanuel Oluwadare Balogun; Josmar Rodrigues da Rocha; Montanari, Carlos Alberto; Kita, Kiyoshi; Sekijima, Masakazu
First page
e0125829
Section
Research Article
Publication year
2015
Publication date
May 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1680162082
Copyright
© 2015 Yoshino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.