Full text

Turn on search term navigation

© 2015 Fontoura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding species linkages and energy transfer is a basic goal underlying any attempt at ecosystem analysis. Although the first food-web studies were based on gut contents of captured specimens, the assessment of stable isotopes, mainly δ13C and δ15N, has become a standard methodology for wide-range analyses in the last 30 years. Stable isotopes provide information on the trophic level of species, food-web length, and origin of organic matter ingested by consumers. In this study, we analyzed the ontogenetic variability of δ13C and δ15N obtained from samples of three Neotropical fish species: silver sardine (Lycengraulis grossidens, n=46), white lambari (Cyanocharax alburnus, n= 26), and the red-tail lambari (Astyanax fasciatus, n=23) in Pinguela Lagoon, southern Brazil. We developed a new metric, called the Weighted Isotopic Signature (φ 15N or φ 13C, ‰), that incorporates ontogenetic variability, body growth, and natural mortality into a single number.

Details

Title
Integrating Ontogenetic Shift, Growth and Mortality to Determine a Species' Ecological Role from Isotopic Signatures
Author
Fontoura, Nelson F; Rodrigues, Lúcia R; Batista, Cibele B; Tanilene S P Persch; Janowicz, Mariola E
First page
e0125059
Section
Research Article
Publication year
2015
Publication date
May 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1682426273
Copyright
© 2015 Fontoura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.