Full text

Turn on search term navigation

© 2015 Fischer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Heritable factors are evidently involved in prostate cancer (PrCa) carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS). The thus far identified Single Nucleotide Polymorphisms (SNPs) explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer.

Results

In this study microRNA (miRNA) profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL) analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found.

Conclusion

Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening, together with Prostate Specific Antigene (PSA) testing, to identify men with an elevated PrCa risk.

Details

Title
MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families
Author
Fischer, Daniel; Wahlfors, Tiina; Mattila, Henna; Oja, Hannu; Tammela, Teuvo L J; Schleutker, Johanna
First page
e0127427
Section
Research Article
Publication year
2015
Publication date
May 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1683763173
Copyright
© 2015 Fischer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.