Full Text

Turn on search term navigation

© 2015 Serrano Gracia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Action recognition has become a hot topic within computer vision. However, the action recognition community has focused mainly on relatively simple actions like clapping, walking, jogging, etc. The detection of specific events with direct practical use such as fights or in general aggressive behavior has been comparatively less studied. Such capability may be extremely useful in some video surveillance scenarios like prisons, psychiatric centers or even embedded in camera phones. As a consequence, there is growing interest in developing violence detection algorithms. Recent work considered the well-known Bag-of-Words framework for the specific problem of fight detection. Under this framework, spatio-temporal features are extracted from the video sequences and used for classification. Despite encouraging results in which high accuracy rates were achieved, the computational cost of extracting such features is prohibitive for practical applications. This work proposes a novel method to detect violence sequences. Features extracted from motion blobs are used to discriminate fight and non-fight sequences. Although the method is outperformed in accuracy by state of the art, it has a significantly faster computation time thus making it amenable for real-time applications.

Details

Title
Fast Fight Detection
Author
Ismael Serrano Gracia; Suarez, Oscar Deniz; Gloria Bueno Garcia; Kim, Tae-Kyun
First page
e0120448
Section
Research Article
Publication year
2015
Publication date
Apr 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1685257887
Copyright
© 2015 Serrano Gracia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.