Full text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2015

Abstract

Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3 NH3 PbI3 ) are derived from first principles, and are compared with kinetic data extracted from the current-voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic-electronic conductors, a finding that has major implications for solar cell device architectures.

Details

Title
Ionic transport in hybrid lead iodide perovskite solar cells
Author
Eames, Christopher; Frost, Jarvist M; Barnes, Piers R F; O'regan, Brian C; Walsh, Aron; Islam, M Saiful
Pages
7497
Publication year
2015
Publication date
Jun 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1690661953
Copyright
Copyright Nature Publishing Group Jun 2015