ARTICLE
Received 14 Jan 2015 | Accepted 15 May 2015 | Published 25 Jun 2015
Hyo Won Kim1,*, Wonhee Ko1,*, JiYeon Ku1, Insu Jeon1, Donggyu Kim2, Hyeokshin Kwon1, Youngtek Oh1, Seunghwa Ryu2, Young Kuk3, Sung Woo Hwang1 & Hwansoo Suh1
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron phonon excitations, further inuencing phonon-assisted inelastic electron tunnelling.
DOI: 10.1038/ncomms8528 OPEN
Nanoscale control of phonon excitations in graphene
1 Device Lab., Samsung Advanced Institute of Technology, Suwon 443-803, Korea. 2 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea. 3 Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.S. (email: mailto:[email protected]
Web End [email protected] ).
NATURE COMMUNICATIONS | 6:7528 | DOI: 10.1038/ncomms8528 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 1
& 2015 Macmillan Publishers Limited. All rights reserved.
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8528
Graphene, which is known to exhibit linear energy dispersion near the Fermi level, is considered a highly desirable material for future electronic13 and photonic4,5
devices owing to its unique electronic properties. The peculiar electronic band structure of graphene is markedly modied by many-body interactions6 such as electronelectron, electron plasmon and electronphonon interactions7,8. Phonons in graphene can be excited by tunnelling electrons from a tip through the use of scanning tunnelling microscopy (STM), and the electronphonon coupling is revealed as an enhancement of electron tunnelling to graphene states with energies larger than the phonon energy. And these modications manifest as a gap-like feature at the Fermi level in the tunnelling spectra obtained via scanning tunnelling spectroscopy measurements912. If controllable, therefore, phonons in graphene may present a valuable opportunity and play an integral role in graphene-based device applications, for example, as a oodgate9 of electronic current. However, very few studies have systematically explored the generation and control of phonons in graphene, and thus far, it has only been speculated that the phonon excitations may be inuenced by the interaction between graphene and the underlying substrate1012.
In the following, we propose a simple method to fabricate deformed graphene for easy modication of the graphene substrate interaction with local control. We choose nanobubbles as the structural knob, that is, an on-off switch for phonon control, and exploit the fact that noble-gas ions can penetrate below the rst atomic layer of a graphite surface to form interstitial defects by low-energy impinging1315.
ResultsFormation of graphene nanobubbles. In our study, graphene nanoislands were rst grown on a Pt(111) substrate. The large-scale topography (Fig. 1a) as well as the atomic-scale honeycomb lattice of graphene (Fig. 1c) was clearly observed via STM. On controlled irradiation by Ar ions, protrusions emerged as a result of certain modications in graphene but not in Pt(111), as evident in Fig. 1b. The atomistic corrugation in the close-up STM topography (Fig. 1d) conrms changes in the structural and electronic properties in the irradiated graphene. The experimentally observed protrusions in the Ar -ion irradiated graphene can in general be attributed to several origins such as adatom adsorption, vacancy-induced deformation16 and nanobubble formation by noble-gas-atom implantation1315. In this context, we carefully eliminated the possibilities of adatoms and carbon vacancies as the reasons for the observed protrusions by controlling the energy and angle of Ar -ion sputtering with subsequent annealing. This is evidenced by the fact that the generally observed resonance peak near the Dirac point, which is characteristic of vacancies in graphene, is indeed absent in the differential conductance (dI/dV) spectrum16 (Fig. 1e). Instead, the presence of the aforementioned gap-like feature near the Fermi energy clearly indicates that nanobubbles are selectively generated using our method. Density functional theory (DFT) calculation results also conrmed the structural deformation and the formation of nanobubbles in graphene on Ar-atom implantation between graphene and the Pt surface. As shown in Fig. 1f, graphene bends around the intercalated atoms and forms structures resembling the experimentally observed nanobubbles. With a single intercalated Ar atom, each nanobubble has approximate diameter and height of 2 nm and 0.15 nm, respectively (Fig. 1g), and these dimensions agree well with those of the smallest nanobubbles observed in our experiment. Our calculations also indicated that nanobubbles of various sizes can form with multiple Ar-atom implantations (see Supplementary Fig. 1).
Size dependence of nanobubbles in phonon excitations. The bubbles labelled B1B6 in Fig. 2a,b are representative examples of nanobubbles whose diameters and heights range from 1 to 6 nm and from 0.1 to 1.0 nm, respectively, as shown in the proles (Fig. 2c) obtained along the dotted lines across B1B6. The dI/dV spectra of the nanobubbles obtained near their apexes share the common gap-like feature centred at the Fermi level (Fig. 2d). While the depth of the gap and the slope of its edge increase monotonically with the size of the nanobubbles, the width and edge position of the gap exhibit no such dependence, which is further clearly evidenced by the magnied spectra of B1 and B2 in Fig. 2e.
The gap-like feature in the dI/dV spectra signies the suppression and/or enhancement of electron tunnelling at specic bias voltages, which we conclude to originate from phonon excitations. In graphene, out-of-plane phonons at K points in Brillouin zone can generate an inelastic tunnelling channel, and the structural nature of the nanobubbles facilitates such phonon excitations and mediates inelastic tunnelling. As a result, a gap-like feature emerges near the Fermi energy9,17. Since the momentum and energy of the excited phonons are xed, the gap size must be independent of the nanobubble size, which in fact agrees with our experimental results. Here we remark that similar derivative features in the dI/dV spectrum may also result from nanobubble-induced curvature. Structural strain modies the electronic structure of graphene rather substantially, as evident in the example of the strain-induced pseudo-magnetic eld manifesting as Landau level peaks in the dI/dV spectrum11,1820. However, the strain-induced changes in the electronic structure depend on the amount of the strain, specically on the size of nanobubbles in our case. The degree of shift in the position of the Landau level peaks has indeed been reported to vary depending on the curvature11,19, which contradicts our observation. Changes in the dI/dV spectrum may also arise from the embedded Ar atoms, which can locally dope the graphene to cause a shift in the Dirac point21,22 or generate additional states to appear as peaks or dips in the tunnelling spectra. Such changes again must depend on the number of Ar atoms, or the size of the nanobubbles, which disagrees with our experiment. Our DFT calculations indeed did not show any discernible changes in the local density of states subsequent to the formation of nanobubbles, thus indicating that no additional charge states were present (See Supplementary Fig. 2).
We examined how the lateral size of a graphene nanobubble inuences phonon excitations via phonon-mode calculations by using an atomistic model. In our experiment, phonon excitations were localized in nanobubbles with diameters as small as 1 nm (B1, Fig. 2), so we constructed a simple model of a circular graphene dot (Fig. 3a), which mimics the case wherein the graphene is fully attached to the metal outside the dot while being completely free-standing inside the bubble. The complete phonon modes were computed for graphene dots with various diameters d, and the resulting normalized cumulative phonon density of states is shown in Fig. 3b. For all values of d, the cumulative phonon density of states exhibit nearly identical distributions although discrete jumps are observed in the case of d 1 nm because of the quantisation effect. Our results
demonstrate that phonons are indeed excitable in nanobubbles with lateral sizes of B1 nm. The dependence of the phonon energy distribution on the bubble size was also explored by calculating the projection of each out-of-plane phonon mode to the plane wave with momentum K (K projection). As shown in Fig. 3c, the maximum value of K projection occurs at 6870 meV for all nite-size dots, whose energy range corresponds well with the phonon energy of 67.3 meV in an innite plane with momentum K. However, the larger the dot size is, the narrower the calculated distribution of the K projection becomes, and this
2 NATURE COMMUNICATIONS | 6:7528 | DOI: 10.1038/ncomms8528 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
& 2015 Macmillan Publishers Limited. All rights reserved.
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8528 ARTICLE
a b
a b
Graphene nanobubbles
B3
Graphene island
Pt Pt
B5
B1
B6
B2
B4
2 nm
2 nm
c
e
c d e
Graphene nanobubble
Flat graphene
d//dv (a.u.)
0.8 0.4 0 0.4 0.8
Sample bias voltage (V)
B6
0.8
0.4
0
0 2 4 6 8
B5
B2
Height (nm)
dI/dV(a.u.)
B3
B4
B1
dI/dV(a.u.)
0.2 0 0.2
B1
B2
d
Distance (nm)
0.40.2 0 0.2 0.4
Bias voltage (V) Bias voltage (V)
Figure 2 | STM topograph of various graphene nanobubbles and their corresponding differential conductance (dI/dV) spectra. (a,b) STM topograph of graphene nanobubbles of various sizes. (Vs 50 mV,
It 30 nA). (c) Dimensional cross-sections along the lines in a,b.
(d) dI/dV spectra obtained at the centres of graphene bubbles B1B6 shown in a,b. (e) Magnied dI/dV spectra near the Fermi level obtained at the centres of B1 and B2.
f g
Height (nm)
0.15
0.1
0.05
0 1 0 1
Distance from Ar (nm)
Figure 1 | Graphene nanobubbles on Pt(111). (a) STM topograph of graphene nanoislands grown on Pt(111) (area of 50 50 nm2, Vs 0.5V,
It 0.5 nA). (b) STM topograph of graphene nanobubbles formed on
graphene nanoislands (area of 25 25 nm2, Vs 0.5 V, It 1 nA).
(c,d) Close-up STM topograph of the graphene honeycomb lattice (area of 2.8 2.8 nm2, Vs 0.4 V, It 30 nA) and nanobubble (area of
3.0 3.0 nm2, Vs 0.03 V, It 30 nA), respectively. (e) dI/dV spectra
obtained at a graphene nanobubble (black line) and the at graphene area (dotted red line). To make gap more evident, we added offset to the dI/dV spectrum measured in the at graphene area. (f) Density functional theory (DFT)-optimized structure (side and tilted top views) of Ar-implanted graphene on Pt (111). The blue, grey and cyan spheres represent Pt, C and Ar atoms, respectively. (g) z-direction displacement of each C atom from a reference atom plotted against xy-plane-projected distance from the closest Ar atom. The reference atom is selected to be the C atom closest to the Pt surface, and each point is duplicated for the corresponding negative distance.
behaviour explains why the depth and the edge slope of the gap-like feature in the dI/dV are observed to increase for larger bubbles. In addition, the calculation of the root mean square amplitude of the phonon modes (Fig. 3d) shows a uniform distribution for all nanodot sizes, which indicates that phonon signals are expected to be detected throughout the bubble. We note that the local variations in the amplitude result from the O3 O3 pattern that is specic to the momentum K (see
Supplementary Fig. 3).
Spatial distribution of phonon excitations. To examine the spatial distribution of excited phonons around graphene nanobubbles, we obtained the spatial dI/dV maps and the corresponding numerical derivative (d2I/dV2) maps. The spatial dI/dV map in Fig. 4c and the corresponding d2I/dV2 map in Fig. 4d around nanobubble B6 (Fig. 2b and Fig. 4a) clearly indicate that phonon excitation only occurs within nanobubbles which are detached from the graphene. The nanobubble region becomes dark for energies in the range 70 to 70 meV in the
dI/dV maps because of the gap, and a strong contrast is observed at around 70 meV in the d2I/dV2 maps, which is manifested as a peak and dip in d2I/dV2 spectra in Fig. 4b. The boundary of the phonon excitation in the dI/dV and d2I/dV2 maps coincides with that of the nanobubble in the topograph. We also plotted the bias voltages of the largest peak in the d2I/dV2 spectra, Vph, shown in
Fig. 4e, and the Vph shows little variation from 64 to 70 meV. However, the intensity of phonon signal increases as a function of the distance between the graphene and Pt layers, as plotted in Fig. 4f. The intensity increases by a factor of 42 when the separation between the Pt and graphene layers increases by 5 , which indicates that the phonon is more easily excited as the graphenePt interaction is reduced (see Supplementary Fig. 4). The exact mechanism by which the graphenePt interaction affects the phonon modes in nanobubbles are out of the scope of this paper; however, we note that the additional atomistic modelling demonstrates the phonon localization does occur by the change in the graphenePt interaction (see Supplementary Note 1, Supplementary Figs 57).
DiscussionWe successfully demonstrated phonon excitations in graphene via local control by generating nanobubbles of various sizes by means of Ar-ion irradiation. The reduced graphenemetal interactions due to Ar atoms embedded in between the graphene and metal
NATURE COMMUNICATIONS | 6:7528 | DOI: 10.1038/ncomms8528 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 3
& 2015 Macmillan Publishers Limited. All rights reserved.
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8528
a b
a
b
Free Fixed
d
1
Cumulative DOS
1
0.5
00 100 200
0.6
1
0
1
Bubble
Flat
dl/dV(a.u.)
1 nm
2 nm 6 nm Inf
5 nm
0.2
400 200 0 200 400 Simple bias voltage (mV)
E (meV)
c
131 mV 30 mV
97 mV
c d
d = 1 nm
d = 2 nm
d = 6 nm
dl/dV
d2l/dV2
d 2l/dV 2(a.u.)
138 mV
104 mV
64 mV
70 mV
37 mV
3 mV
Kprojection (a.u.)
0.5
0
0.5
0
0.5
0
0 50 100 150
3
0
3
3
0
3
3
d
y(nm)
131 mV 97 mV 64 mV 30 mV
37 mV
138 mV
104 mV 3 mV
70 mV
0
3
3
e
f
0
3
E (meV)
x (nm)
Max
0
120
90
60
30
0
Figure 3 | Calculation of phonon modes in nanometre-size graphene dots. (a) Schematic of graphene dot of diameter d, wherein the atoms inside the dot are free to move while those outside are stationary.(b) Graph of cumulative phonon density of states (DOS) for graphene dots with different diameters. All graphs are normalized so that the maximum cumulative phonon density of state (CDOS) is 1. (c) Projection of each phonon mode to a plane wave with momentum K and out-of-plane displacements for graphene dots with d 1, 2 and 6 nm. (d) Root mean
square (r.m.s.) amplitudes of the phonon modes with K projections larger
than one-third of the maximum K projection for the d values shown in c.
Vph (mV)
(d 2l/dV 2)ph
(a.u.)
Figure 4 | dI/dV and d2I/dV2 maps of nanobubble. (a) STM topograph of graphene nanobubble B6 (Vs 500 mV, It 1 nA). (b) Averaged dI/dV
(black) and d2I/dV2 (red) spectra. The d2I/dV2 spectra were calculated by numerical derivatives of the corresponding dI/dV spectra. The solid line indicates values obtained within the nanobubble, while the dotted line indicates values obtained for the outer at region. Along the solid line, the bias values at which the maps were plotted in c,d are marked by dots. (c) dI/dV and (d) d2I/dV2 maps obtained over the area shown in a for bias voltages V 131, 97, 64, 30, 3, 37, 104 and 138 mV from left to
right. (e) Map of the bias voltage of the largest d2I/dV2 peak, Vph, which corresponds to the local phonon energy. (f) Map of the amplitude of d2I/dV2 values at Vph, [d2I/dV2]ph, which corresponds to the local phonon intensity.
substrate were shown to promote phonon excitations and enhance electron tunnelling above the phonon energy. We expect that our demonstrated control over phonon excitations down to the nanoscale will pave the way for advancements in graphene-based nano-electromechanical devices such as electrical switches based on the induced nonlinear IV behaviour9. Our results also provide a fundamental understanding of the unwanted, yet possible, changes in electronic properties in actual graphene nanodevices, which arise from unwanted nanobubbles formed due to structural imperfections both in graphene and the supporting substrate.
Methods
Sample preparation and measurements. A Pt(111) sample was cleaned by means of repeated cycles of Ar-ion sputtering and annealing under ultrahigh vacuum. Graphene nanoislands were prepared by exposure of the clean Pt(111) surface to ethylene followed by annealing at 1,100 K23. To generate graphene nanobubbles, the graphene on the Pt(111) surface was irradiated with Ar ions
(500 eV, 1 mA), and the sample was annealed at 1,000 K to remove additional impurities adsorbed onto graphene. Our STM measurements were performed using a Unisoku low-temperature STM at 2.8 K, and scanning tunnelling spectroscopy was performed using a conventional lock-in technique with a modulation bias voltage at a frequency of 1 kHz and an amplitude of 10 mV.
Modelling. Our rst-principles calculations are based on the DFT employing the generalized gradient approximation with the projector-augmented-wave method as implemented in the Vienna ab initio simulation package2426, and the electronic wave functions are expanded in a plane wave basis set with a cut-off energy of 273.9 eV. The vdW-DF2 (ref. 27) functional is also selectively employed. The
4 NATURE COMMUNICATIONS | 6:7528 | DOI: 10.1038/ncomms8528 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
& 2015 Macmillan Publishers Limited. All rights reserved.
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8528 ARTICLE
periodically replicated system of a 9 9 graphene supercell placed on a three-layer
slab of 8 8 Pt(111) with a vacuum spacing of B10 , which reproduced the
experimentally observed moir pattern, was rst optimized. A part of the carbon atoms in graphene was subsequently manually deformed to introduce an Ar atom in between the graphene and the metal surface. The atomic positions of the resulting structure were relaxed until residual forces were o0.02 eV 1.
Atomistic calculation. We computed the Hessian matrix of the atoms within the graphene nanobubble using the adaptive intermolecular reactive empirical bond order (AIREBO) potential for carbon28, and we obtained the phonon spectra from the eigenvalues and eigenvectors of the Hessian matrix. We chose the AIREBO potential to avoid the otherwise large computational cost of rst-principles calculations. While the phonon spectra from the AIREBO potential deviate slightly from the DFT calculations29, the AIREBO approach can correctly capture changes in the phonon spectra due to the boundary.
References
1. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science 336, 11401143 (2012).
2. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature 438, 201204 (2005).
3. Li, X. et al. Large-area synthesis of high-quality and uniform graphene lms on copper foils. Science 324, 13121314 (2009).
4. Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 42854294 (2010).
5. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611622 (2010).
6. Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198201 (2007).
7. Zhou, S. Y., Gweon, G. H. & Lanzara, A. Low energy excitations in graphite: The role of dimensionality and lattice defects. Ann. Phys. 321, 17301746 (2006).
8. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 3, 3640 (2007).
9. Zhang, Y. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 4, 627630 (2008).10. Sutter, E., Acharya, D. P., Sadowski, J. T. & Sutter, P. Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001). Appl. Phys. Lett. 94, 133101 (2009).
11. Levy, N. et al. Strain-induced pseudomagnetic elds greater than 300 tesla in graphene nanobubbles. Science 329, 544547 (2010).
12. Gyam, M., Eelbo, T., Waniowska, M. & Wiesendanger, R. Impact of intercalated cobalt on the electronic properties of graphene on Pt(111). Phys. Rev. B 85, 205434 (2012).
13. Marton, D., Boyd, K. J., Lytle, T. & Rabalais, J. W. Near-threshold ion-induced defect production in graphite. Phys. Rev. B 48, 67576766 (1993).
14. Hahn, J. R. & Kang, H. Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation. Phys. Rev. B 60, 60076017 (1999).
15. Cun, H. et al. Immobilizing individual atoms beneath a corrugated single layer of boron nitride. Nano Lett. 13, 20982103 (2013).
16. Ugeda, M. M. et al. Point defects on graphene on metals. Phys. Rev. Lett. 107, 116803 (2011).
17. Wehling, T. O., Grigorenko, I., Lichtenstein, A. I. & Balatsky, A. V. Phonon-mediated tunneling into graphene. Phys. Rev. Lett. 101, 216803 (2008).
18. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-eld quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 3033 (2010).
19. Lu, J., Neto, A. H. C. & Loh, K. P. Transforming moir blisters into geometric graphene nano-bubbles. Nat. Commun. 3, 823 (2012).
20. Kim, H. W. et al. Strong interaction between graphene edge and metal revealed by scanning tunneling microscopy. Carbon NY 78, 190195 (2014).
21. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722726 (2009).
22. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2. Phys. Rev. B 79, 205411 (2009).
23. Land, T. A., Michely, T., Behm, R. J., Hemminger, J. C. & Comsa, G. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264, 261270 (1992).
24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
25. Kresse, G. & Furthmller, J. Efcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).
26. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 17581775 (1999).
27. Klime, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
28. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 64726486 (2000).
29. Zhang, H., Lee, G. & Cho, K. Thermal transport in graphene and effects of vacancy defects. Phys. Rev. B 84, 115460 (2011).
Acknowledgements
S.R. acknowledges the support of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013010091).
Author contributions
H.W.K designed the experiments and performed the STM and STS measurements. H.W.K. and W.K. analysed the data. J.K., D.K. and S.R. carried out theoretical calculations. H.W.K., W.K. and J.Y.K. wrote the manuscript. All authors discussed the results and analysed the data.
Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications
Web End =http://www.nature.com/ http://www.nature.com/naturecommunications
Web End =naturecommunications
Competing nancial interests: The authors declare no competing nancial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/
Web End =http://npg.nature.com/ http://npg.nature.com/reprintsandpermissions/
Web End =reprintsandpermissions/
How to cite this article: Kim, H.W. et al. Nanoscale control of phonon excitations in graphene. Nat. Commun. 6:7528 doi: 10.1038/ncomms8528 (2015).
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the articles Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/by/4.0/
NATURE COMMUNICATIONS | 6:7528 | DOI: 10.1038/ncomms8528 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 5
& 2015 Macmillan Publishers Limited. All rights reserved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Nature Publishing Group Jun 2015
Abstract
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron-phonon excitations, further influencing phonon-assisted inelastic electron tunnelling.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer