Full text

Turn on search term navigation

© 2015 Cox et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and Methods

Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30μg HA alone or 1.5, 7.5 or 30μg HA adjuvanted with Matrix M. The kinetics and longevity of the serological responses against NIBRG-14 were determined by haemagglutination inhibition (HI), single radial haemolysis (SRH), microneutralization (MN) and ELISA assays. The cross-H5 clade responses in sera were determined by HI and the antibody-secreting (ASC) cell ELISPOT assays. The protective efficacy of the vaccine against homologous HPAI challenge was evaluated in ferrets.

Results

The serological responses against the homologous and cross-reactive strains generally peaked one week after the second dose, and formulation with Matrix M augmented the responses. The NIBRG-14-specific seroprotection rates fell significantly by six months and were low against cross-reactive strains although the adjuvant appeared to prolong the longevity of the protective responses in some subjects. By 12 months post-vaccination, nearly all vaccinees had NIBRG-14-specific antibody titres below the protective thresholds. The Matrix M adjuvant was shown to greatly improve ASC and serum IgG responses following vaccination. In a HPAI ferret challenge model, the vaccine protected the animals from febrile responses, severe weight loss and local and systemic spread of the virus.

Conclusion

Our findings show that the Matrix M-adjuvanted virosomal H5N1 vaccine is a promising pre-pandemic vaccine candidate.

Trial Registration

ClinicalTrials.gov NCT00868218

Details

Title
Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets
Author
Cox, Rebecca J; Major, Diane; Pedersen, Gabriel; Pathirana, Rishi D; Hoschler, Katja; Guilfoyle, Kate; Roseby, Sarah; Bredholt, Geir; Assmus, Jörg; Breakwell, Lucy; Campitelli, Laura; Sjursen, Haakon
First page
e0131652
Section
Research Article
Publication year
2015
Publication date
Jul 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1694530755
Copyright
© 2015 Cox et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.