Full text

Turn on search term navigation

Copyright Nature Publishing Group Jul 2015

Abstract

Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min-1 ) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials.

Details

Title
Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum
Author
Babenko, Vitaliy; Murdock, Adrian T; Koós, Antal A; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-webber, Jack A; Nicholas, Robin J; Grobert, Nicole
Pages
7536
Publication year
2015
Publication date
Jul 2015
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1696188832
Copyright
Copyright Nature Publishing Group Jul 2015