Full text

Turn on search term navigation

© 2015 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.

Details

Title
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes
Author
Liu, Jian; Jin-Xing, Liu; Ying-Lian, Gao; Xiang-Zhen Kong; Xue-Song, Wang; Wang, Dong
First page
e0133124
Section
Research Article
Publication year
2015
Publication date
Jul 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1698024498
Copyright
© 2015 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.