Abstract
Background
The global network of eddy-covariance (EC) flux-towers has improved the understanding of the terrestrial carbon (C) cycle, however, the network has a relatively limited spatial extent compared to forest inventory data and plots. Developing methods to use inventory-based and EC flux measurements together with modeling approaches is necessary evaluate forest C dynamics across broad spatial extents.
Methods
Changes in C stock change ([Delta]C) were computed based on repeated measurements of forest inventory plots and compared with separate measurements of cumulative net ecosystem productivity ([Sigma]NEP) over four years (2003 - 2006) for Douglas-fir (Pseudotsuga menziesii var menziesii) dominated regeneration (HDF00), juvenile (HDF88 and HDF90) and near-rotation (DF49) aged stands (6, 18, 20, 57 years old in 2006, respectively) in coastal British Columbia. [Delta]C was determined from forest inventory plot data alone, and in a hybrid approach using inventory data along with litter fall data and published decay equations to determine the change in detrital pools. These [Delta]C-based estimates were then compared with [Sigma]NEP measured at an eddy-covariance flux-tower (EC-flux) and modelled by the Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) using historic forest inventory and forest disturbance data. Footprint analysis was used with remote sensing, soils and topography data to evaluate how well the inventory plots represented the range of stand conditions within the area of the flux-tower footprint and to spatially scale the plot data to the area of the EC-flux and model based estimates.
Results
The closest convergence among methods was for the juvenile stands while the largest divergences were for the regenerating clearcut, followed by the near-rotation stand. At the regenerating clearcut, footprint weighting of CBM-CFS3 [Sigma]NEP increased convergence with EC flux [Sigma]NEP, but not for [Delta]C. While spatial scaling and footprint weighting did not increase convergence for [Delta]C, they did provide confidence that the sample plots represented site conditions as measured by the EC tower.
Conclusions
Methods to use inventory and EC flux measurements together with modeling approaches are necessary to understand forest C dynamics across broad spatial extents. Each approach has advantages and limitations that need to be considered for investigations at varying spatial and temporal scales.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer