It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD) method and top and bottom electrodes. The thinnest ZnO layer is deposited by sputtering, with a low thermal capacity and a rapid response shoulders a high-frequency sensing task, while the thicker ZnO layers are deposited by AD with a large thermal capacity and a tardy response shoulders a low-frequency sensing task. The fabricated device is effective in the range of 1 KHz~10 KHz with a rapid response and high voltage responsivity, while the ZnO layers with thicknesses of about 0.8 μm, 6 μm, 10 μm and 16 μm are used for fabricating the meliorated multi-frequency band pyroelectric sensor. The proposed sensor is successfully designed, analyzed, and fabricated in the present study, and can indeed extend the sensing range of the multi-frequency band.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer