Full text

Turn on search term navigation

Copyright © 2015 Fellippo Ramos Verri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this study was to evaluate the stress distribution of monocortical and bicortical implant placement of external hexagon connection in the anterior region of the maxilla by 3D finite element analysis (FEA). 3D models were simulated to represent a bone block of anterior region of the maxilla containing an implant (4.0 × 10.0 mm) and an implant-supported cemented metalloceramic crown of the central incisor. Different techniques were tested (monocortical, bicortical, and bicortical associated with nasal floor elevation). FEA was performed in FEMAP/NeiNastran software using loads of 178 N at 0°, 30°, and 60° in relation to implant long axis. The von Mises, maximum principal stress, and displacement maps were plotted for evaluation. Similar stress patterns were observed for all models. Oblique loads increased the stress concentration on fixation screws and in the cervical area of the implants and bone around them. Bicortical technique showed less movement tendency in the implant and its components. Cortical bone of apical region showed increase of stress concentration for bicortical techniques. Within the limitations of this study, oblique loading increased the stress concentrations for all techniques. Moreover, bicortical techniques showed the best biomechanical behavior compared with monocortical technique in the anterior maxillary area.

Details

Title
Three-Dimensional Finite Element Analysis of Anterior Single Implant-Supported Prostheses with Different Bone Anchorages
Author
Fellippo Ramos Verri; Joel Ferreira Santiago Júnior; Daniel Augusto de Faria Almeida; Ana Caroline Gonçales Verri; Victor Eduardo de Souza Batista; Cleidiel Aparecido Araujo Lemos; Noritomi, Pedro Yoshito; Eduardo Piza Pellizzer
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
23566140
e-ISSN
1537744X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1706167643
Copyright
Copyright © 2015 Fellippo Ramos Verri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.