Published for SISSA by Springer Received: July 8, 2014
Revised: October 4, 2014 Accepted: October 6, 2014 Published: November 5, 2014
Bhaskar Dutta,a Ilia Gogoladze,b,1 Rizwan Khalidc and Qaisar Shab
aMitchell Institute of Fundamental Physics and Astronomy,
Department of Physics and Astronomy, Texas A&M University,
College Station, TX 77843-4242, U.S.A.
bBartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A.
cDepartment of Physics, School of Natural Sciences, National University of Sciences & Technology, H-12, Islamabad, Pakistan
E-mail: mailto:[email protected]
Web End [email protected] , mailto:[email protected]
Web End [email protected] , mailto:[email protected]
Web End [email protected] , mailto:[email protected]
Web End [email protected]
Abstract: We present some R-parity conserving supersymmetric models which can accommodate the 3.5 keV X-ray line reported in recent spectral studies of the Perseus galaxy cluster and the Andromeda galaxy. Within the Minimal Supersymmetric Standard Model (MSSM) framework, the dark matter (DM) gravitino (or the axino) with mass of around 7 keV decays into a massless neutralino (bino) and a photon with lifetime 1028 sec. The
massless bino contributes to the e ective number of neutrino species Ne and future data will test this prediction. In the context of NMSSM, we rst consider scenarios where the bino is massless and the singlino mass is around 7 keV. We also consider quasi-degenerate bino-singlino scenarios where the mass scale of DM particles are O(GeV) or larger. In such a scenario we require the mass gap to generate the 3.5 keV line. We comment on the possibility of a 7 keV singlino decaying via R parity violating couplings while all other neutralinos are heavy.
Keywords: Supersymmetry Phenomenology
ArXiv ePrint: 1407.0863
1On leave of absence from: Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia.
Open Access, c
[circlecopyrt] The Authors.
Article funded by SCOAP3. doi:http://dx.doi.org/10.1007/JHEP11(2014)018
Web End =10.1007/JHEP11(2014)018
3.5 keV X-ray line and R-parity conserving supersymmetry
JHEP11(2014)018
Contents
1 Introduction 1
2 MSSM 22.1 Gravitino dark matter and massless bino 32.2 Axino dark matter and massless bino 5
3 NMSSM 6
4 Conclusion 9
A Two massless neutralinos in the NMSSM 10
1 Introduction
Two recent independent studies [1, 2] based on X-ray observation data show a photon emission line at 3.5 keV energy in the spectra from Perseus galaxy cluster and the Andromeda galaxy. This observation can be interpreted as a possible signal of dark matter (DM) decay with the emission of a 3.5keV photon, with the DM mass (mDM) and lifetime (DM) given by,
mDM [similarequal] 7 keV
DM [similarequal] 2 [notdef] 1027 1028 sec. (1.1)
A variety of explanations of this line have already been proposed [332]. However, there exist just a few supersymmetric scenarios which contain such a light neutral particle. For instance, it could be an axino [2729], gravitino [30, 31] or neutralino (bino) [32]. These particles are able to produce the observed X-ray line [1, 2] by decaying through R-parity violating processes [32] to a photon and neutrino, for example.
In this paper we present some simple scenarios which can accommodate the 3.5 keV X-ray line in the context of R-parity conserving supersymmetry (SUSY). They include the minimal supersymmetric standard model (MSSM) and Next-to-MSSM (NMSSM). It is interesting to note that in the MSSM, the lightest neutralino can be massless [3335] while satisfying the current experimental constraints. In order to realize this scenario [33], we assume that the soft supersymmetry breaking (SSB) MSSM gaugino masses are arbitrary, and we impose the requirement that the neutralino mass matrix at the weak scale has zero determinant. This can be achieved by suitable choice of parameters, while having very small ([lessorsimilar] 1 eV) or even zero mass bino, with the charginos (and the next to lightest neutralino ~
~01)
heavier then 420 GeV to satisfy the mass bounds on the chargino from LHC [36, 37]. In our scenarios where the near massless bino is accompanied by a 7 keV gravitino, axino, or
1
JHEP11(2014)018
singlino which behave as warm DM. arising in di erent models around keV scale giving rise to warm DM. The 7 keV DM particle decays to a bino and a photon with an appropriate long lifetime to explain the observed X-ray line. The warm dark matter scenario which is under investigation for a long time [38], proposes solution to the missing satelite problem of the local group of galaxies [39]. The massless bino contributes to the e ective number of neutrino species, Ne , which is expected to be strongly constrained in the near future.
We also consider an almost degenerate bino-singlino scenario in the NMSSM framework, such that the mass scale of cold DM particles are O(GeV) or larger.
We can retain gauge coupling unication in the presence of non-universal gaugino masses at MGUT, which are realized via non-singlet F -terms compatible with the underlying grand unied theory (GUT) [4044]. Nonuniversal gauginos can also be generated from an F -term which is a linear combination of two distinct elds of di erent dimensions [45]. It is also possible to have non-universal gaugino masses [46] in the SO(10) GUT with unied Higgs sector [47, 48], or utilize two distinct sources for supersymmetry breaking [49]. In general, in the gauge mediated supersymmetry breaking (GMSB) scenario, all gaugino masses can be independent of each other [50, 51]. With so many distinct possibilities available for realizing non-universal gaugino masses while keeping universal sfermion mass (m0) at MGUT, we employ non-universal masses for the MSSM gauginos in our study without further justication.
One of the motivations for non-universal gauginos can be related to the interplay between the 125 GeV Higgs boson and the explanation of the apparent muon g-2 anomaly. A universal SSB mass term for sfermions (m0) is needed to suppress avor-changing neutral current processes.1 On the other hand, in order to accommodate the 125 GeV [53, 54] light CP even Higgs boson mass and to resolve the discrepancy between the SM and the measurement of the anomalous magnetic moment of the muon [55, 56] in the framework of universal sfermion SSB masses, we need to have non-universal gaugino masses at MGUT [57].
The outline of our paper is as follows. In section 2, we discuss the 3.5 keV line in the context of MSSM scenarios. In section 3, we discuss possible NMSSM scenarios, followed with our conclusion in section 4. In the appendix we present technical details regarding two massless neutralinos in the NMSSM and provide a few representative solutions of interest.
2 MSSM
In this section, we outline several scenarios that can accommodate a 3.5 keV X-ray line in the MSSM. Let us start by examining how it might be possible to obtain a massless neutralino in the framework of the MSSM. The neutralino mass matrix in the gauge eigenbasis 0 = ( ~B, 0,0d,0u)T has the form [52]
M1 0 MZswc MZcws
0 M2 MZcwc MZcws
MZswc MZcwc 0 MZsws MZcws 0
2
JHEP11(2014)018
M~~0 =
1See for instance [52] and references therein.
0
B
B
B
B
B
@
1
C
C
C
C
C
A
. (2.1)
Here M1, M2 are the supersymmetric gaugino mass parameters for the U(1) and SU(2) sector respectively, while is the bilinear Higgs mixing parameter. MZ denotes the Z gauge-boson mass and sw sin w, cw cos w, where w is the weak mixing angle.
s sin , c cos , while tan is the ratio of the vacuum expectation values (VEVs)
of the MSSM Higgs doublets.To realize a massless netralino [33, 35], the following relation must be satised:
M1 = M2M2Z sin(2 )s2w
M2 M2Z sin(2 )c2w
2M2Zs2w
tan . (2.2)
Implementing the chargino mass bound ([notdef][notdef], M2) > 420 GeV in eq. (2.2) leads to M1
(M2, [notdef][notdef]). In the appendix we give one example of an MSSM scenario with very small LSP
neutralino (mostly bino) mass. Such a bino is consistent with current experimental data from LEP, structure formation etc [35]. The LHC provides constraints on the next to lightest neutralino, chargino, and slepton masses when the lightest neutralino is almost massless.
The relation in eq. (2.2) has been obtained at tree level, but radiative corrections do not signicantly modify it. Notwithstanding radiative corrections, since M1, M2 and are free parameters, there is no problem to ensure that the determinant in eq. (2.1) is zero. Thus, it is possible to have an essentially massless neutralino by ne-tuning the parameters in the framework of the MSSM, and an example is presented in the appendix.
The existence of a near massless bino, however, would contribute to Ne Ne Ne ,SM = 1. The reason for this is that the essentially massless bino decouples
from the thermal background around the same time as the neutrinos. The decoupling temperature also depends on the slepton mass which we take around the weak scale. However, if the slepton mass increases, the decoupling temperature also increases, e.g., if the slepton mass is 10 TeV, then the decoupling temperature will be O(GeV). The present observational bound on Ne from Planck + WMAP9 + ACT + SPT + BAO + HST at 2 is Ne = 0.48+0.480.45 [58]. The value of Ne depends on Hubble constant where there is a discrepancy between Planck and HST [59]. A reconciliation can occur using larger Ne [60]. The new BICEP2 data [61] also requires a larger Ne (=0.81 [notdef]0.25) in order
to reconcile with the Planck data [62, 63]. Future data hopefully will settle this issue.
2.1 Gravitino dark matter and massless bino
One way to accommodate a 3.5 keV X-ray line via a massless neutralino comes from the gauge mediated SUSY breaking (GMSB) scenario. As a consequence of the avor blind gauge interactions responsible for generating the SSB terms,2 this senario provides a compelling resolution of the SUSY avor problem. In both the minimal [64] and general [50, 51] GMSB versions, the gravitino, which is the spin 3/2 superpartner of the graviton, acquires mass through spontaneous breaking of local supersymmetry. The gravitino mass can be
1 eV 100 TeV. Additionally, in the general GMSB scenario, the SSB mass terms for
the MSSM gauginos are arbitrary. In particular, it is possible to have a massless neutralino
2See [64] and original references therein.
3
JHEP11(2014)018
eG ! ~~01 + decay.
(essentially a bino) in this framework. With all other sparticles being much heavier, the gravitino dominantly decays to the neutralino (bino) and photon ( ! ~
Figure 1.
~01 + ).
The relevant diagram for this decay is shown in gure 1, and the decay rate is given by [65]
(
eG ! ~~01 ) =
cos 2W m3[tildewide]G
. (2.3)
Using eq. (2.3) and assuming the gravitino mass to be 7 keV, the gravitino lifetime is estimated to be 3 [notdef] 1029 sec, which is approximately a factor of 10 more than what we need
which can be di cult to obtain. However, physics around the Planck scale MP is largely unknown. It has been noted in refs. [6669] that the fundamental mass scale (M ) can be reduced to MP /pN in the presence of a nonzero number of degrees of freedom (N). In fact, it is shown that the scale for quantum gravity in 4D becomes the new scale M where the clas
sical gravity becomes very strong and below this scale no quasi-classical black hole can exist. This becomes the scale of the non-renormalizable operators as well since this mass scale marks the new cuto . In this way the cuto scale can be reduced as required in eq. (2.3).
It is possible to envision a larger e ective coupling~
~01 coupling by assuming new particles providing additional contributions to the e ective~
~01 coupling. For example,
there could be a new operator~
~01 fscalar/M , which can arise from the fundamental interactions, ffermion and fscalar ~
~01ffermion. By integrating the fermion ffermion at the scale M we can get the above operator. The scalar fscalar can have a VEV < fscalar > M
to give us a new tree-level O(1) contribution to the~
~01 coupling. It is possible to have large contributions from many such diagrams to induce a large e ective coupling to yield the desired lifetime for the gravitino as needed in eq. (2.3). However, SUSY needs to be broken in order to preserve equivalence principle.
One important issue for gravitino dark matter is the reproduction of the correct dark matter relic density. The initial thermal abundance is diluted because of a late reheat temperature (TR) arising from heavy eld/moduli decay. The relic density ( h2) of gravitinos which arise from the scattering of gluinos, squarks etc. is given by [7073],
h2 0.27 [parenleftbigg]
To realize h2 0.1 with m~g [greaterorsimilar] 1.4 TeV and M 1017 GeV, we require TR [lessorsimilar]
104 GeV.
4
JHEP11(2014)018
8M2P
100 GeV m
eG
TR 1010 GeV
[parenrightbigg] [parenleftbigg]
[parenrightbigg] [parenleftBig]
m~g
1 TeV
2 2.4 [notdef] 1018 GeV
M
2. (2.4)
JHEP11(2014)018
Figure 2. ! ~
2.2 Axino dark matter and massless bino
A very compelling way of solving the strong CP problem is via the Peccei-Quinn (PQ) mechanism [74], which yields a light pseudo-scalar eld (axion a) associated with the spontaneously broken global U(1) symmetry. An inevitable prediction from a combination of PQ mechanism and low scale supersymmetry is the existence of the supersymmetric partners of the axion, the axino (a) and saxion s [76]. The axion supereld A can be expressed as,
A = 1
p2(s + ia) +
~B B . (2.6)
Here Y = Y 2/4 is the hypercharge gauge coupling constant and CY is a model dependent coupling associated with the U(1)Y gauge anomaly interaction. The axion decay constant is denote by fa. The axino decays to a neutralino (bino) and photon without requiring R-parity violating interaction. The relevant diagram for this decay is shown in gure 2,
3See [75] and references therein.
4See [79] and references therein.
5
~01 + decay.
p2 + FA , (2.5)
where FA denotes the auxiliary eld and is a Grassmann coordinate. In general, the axino mass is very model dependent3 and can lie anywhere from eV to multi-TeV. It was shown that a stable axino with keV mass is a viable warm dark matter candidate [77, 78]. The3.5 keV X-ray line can be explained by a decaying axino dark matter. For this purpose, the authors in [2729] introduce R-parity violating couplings, with strength 101 103 in order to accommodate desired axino life time.
In this paper, we propose an alternative way to explain the X-ray line using 7 keV axino dark matter. As mentioned above, within the MSSM framework, it is possible to have a massless neutralino in the spectrum which is consistent with all experimental constraints. We know that the axino couples to the gauginos and gauge bosons via the anomaly induced term. In particular, we are interested in the interaction of the axino to the bino ( ~B) and the hypercharge vector boson (B). This interaction takes the form,4
i Y CY
16fa 5[ , ]
and the decay rate is given by [78],
( ! ~01 ) =
m3~af2a , (2.7)
where m~a is axino mass, C2a~ = (Cy/ cos W )Z11, and Z11 denotes the bino part of the lightest neutralino.
The axino lifetime can be expressed as:
( ! ~01 ) = 1.3 [notdef] 1023sec [parenleftbigg]
fa 1012 GeV
2emC2a~
1283
2 7.1 keV m~a
3
(2.8)
From eq. (2.8) we see that we need to have fa 1014 GeV is required. On the other hand,
in order not to overproduce axion dark matter, we need to have fa [lessorsimilar] 1012 GeV is preferred. One resolution of this is to invoke a small initial axion mis-alignment angle 0.10.01,5
which yields the required axion dark matter abundance while allowing fa 1014 GeV. An
alternative solution [8184] is to add additional massive elds whose late decay can inject substantial entropy into the universe at times after axion oscillations begin, but before BBN starts.
It is, furthermore, possible to have an axion-like particle (and associated axino) [8587] in the low scale spectrum, which may be obtained from string theory. Axino-like particles can decay into a bino and photon. In this case the bound on fa can be more exible and also the coe cient Cy can be suitably adjusted to be O(102) or so, since it is not tied to the solution of the strong CP problem.
3 NMSSM
As shown in the previous section, in the MSSM it is possible to have a massless bino, while keeping all other neutralinos heavier than 400 GeV. In the NMSSM, the neutralinos have a singlino component from the gauge singlet chiral supereld S (with even Z2 matter parity)
added to the MSSM with new terms in the superpotential:
W HuHd + HuHdS
13 S3, (3.1)
Hu and Hd are the standard MSSM Higgs doublets and and are dimensionless couplings. Once the S eld acquires a VEV [angbracketleft]S[angbracketright], we obtain an e ective -term for MSSM Higgs
elds, e = + [angbracketleft]S[angbracketright]. The neutralino mass matrix in the gauge eigenstate basis 0 =
( ~B, 0,0d,0u, s)T has the following form:
MN =
JHEP11(2014)018
0
B
B
B
B
B
B
B
@
M1 0 mZc sW mZs sW 0
0 M2 mZc cW mZs cW 0
mZc sW mZc cW 0 e vs mZs sW mZs cW e 0 vc
0 0 vs vc 2 [angbracketleft]S[angbracketright]
1
C
C
C
C
C
C
C
A
. (3.2)
5See for instance [80] and references therein.
6
It was shown in [34] that a massless neutralino requires that
= 12 [parenleftbigg]
v
2 0.6m2zM2 0.5M22 sin 2 M1M2 .
This solution is obtained for the case when (e , M1, M2) > MZ and the singlino is the
lightest neutralino. We can, however, easily make the lightest neutralino to be mostly bino and the next to lightest neutralino essentially the singlino. The technical details for obtaining two massless neutralinos in the framework of NMSSM are given in appendix A.
In order to explain the 3.5 keV X-ray line, we propose that one of the neutralinos, which is mostly bino, is almost a massless ([lessorsimilar] 1 eV) particle and does not, therefore, contribute to the warm or cold dark matter relic abundance. The second neutralino, in this scenario, is mostly singlino with a mass of 7 keV and gives rise to the correct dark matter relic abundance [88]. The annihilation of thermal NMSSM Higgs produce singlinos, and it was shown that the correct relic abundance requires the singlino mass to be a few keV. Thus,
~~h2
4(1.2)2 5
!2 M3~~Mplc . (3.3)
Here Ms is the mass of the scalar singlet, g(TR) = 228.75, g(T ) = 2, TR 102 105 GeV,
kT = (43g(T )/45)1/2 and T is the present CMB temperature. Choosing = 3 [notdef] 102,
= 1010, M1 = 0.23 GeV and M2 = = 550 GeV (shown in point 1 of table 1 in the
appendix), we can have the masses for the lightest neutralino (mostly bino) and the next to lightest neutralino (mostly singilino) to be essentially massless and 7 keV respectively. This scenario satises the dark matter relic abundance constraint.
The singlino can radiatively decay to a bino and photon with a long lifetime, which allows us to obtain the 3.5 keV X-ray line. The relevant diagram [89] for this decay is shown in gure 3 and the decay rate is given by
(~
~02 ! ~
~01 )
2 2em 83
JHEP11(2014)018
( /3 + 2)v2 sin 2 MsM~~
2 g(T ) g(TR)
TRT 3
kT v4 sin2 2
m3~~2
M2H
. (3.4)
Here we assume that the charginos (m~~+
i ) and charged Higgs (mH
+ ) have approximately
the same mass.
The ~
~02 lifetime can be written as:
(~
~02 ! ~
~01 ) 2 [notdef] 1027sec [parenleftbigg]
MH 105 GeV
2 1010
2. (3.5)
In the NMSSM, an alternative explanation for the 3.5 keV emission line requires one to have two quasi-degenerate neutralinos (bino and singlino), with mass di erence arranged to be 3.5 keV. We present one such example in the appendix. We require the next to
lightest supersymmetric particle (NLSP), which is a mixture of singlino and bino, to be long-lived on cosmological time scales. The decay of this NLSP to the LSP, which again may be a bino-singlino mixture, can explain the 3.5 keV emission line.
7
Figure 3. Decay of NLSP neutralino to the LSP neutralino with the associated emission of a
photon.
The relevant Feynman diagrams for the NLSP neutralino decay are given in gure 3. The decay width is given by [9092],
2em 2 644
( m~)3
m4H[notdef]
m2~, (3.6)
where em is the electromagnetic coupling constant, m~ is the quasi-degenerate mass of the two lightest neutralinos, m~ is their mass splitting, and mH[notdef] is the mass of the charged
Higgs.Assuming m~02 m~
01 1 GeV and m~ 3.5 keV, and as an example we consider
108 and mH[notdef] = 500 GeV in order to have (~02 ! ~01 ) (1027 1028) sec. The
dark matter in this case is cold compared to the previous scenarios.
The singlino/bino dark matter can be produced non-thermally from the decay of some heavy eld/moduli () with a reheat temperature [greaterorsimilar] 2 MeV in order to avoid problems with big bang nucleosynthesis. As shown in [93, 94], if the abundance of DM production (combination of dilution factor due to decay and branching ratio into DM particles) is small enough to satisfy the DM content, the annihilation cross-section of dark matter becomes irrelevant.
The DM abundance is given as nDM/s = min[(nDM/s)obs(3 [notdef] 1026/ < v >f
)(Tf/TR), Y BrDM], where (nDM/s)obs [similarequal] 5 [notdef] 1010(1 GeV/mDM), TR is the reheat tem
perature, Y = 3TR/4m [similarequal] 1/
JHEP11(2014)018
pcm/MP , and BRDM denotes the branching ratio for decay into singlino/bino. The singlino DM does not reach thermal equilibrium after production from the decay of the heavy eld since the decoupling temperature is much larger than the reheat temperature TR.
It is also interesting to note that the singlino can be the lightest sparticle, and it can then decay via some R-parity violating couplings. We present an example in the appendix. A slight change in the parameter values corresponding to the existence of massless neutralinos will make the neutralino mass around keV. A keV scale singlino LSP can decay at loop level in the presence of R-parity violating couplings. Here we consider only the lepton number violation operators:
L[negationslash]R = iLiHuS + ijkLiLjEck + [prime]ijkQiLjdck + iHuLi. (3.7)
8
Figure 4. Decay of LSP neutralino through R-parity violation term.
The neutralino-neutrino mass matrix in the gauge eigenstate basis 0T ( ~B0, 03,0d,0u,, i) is given by
M~~0 = MN T[negationslash]R
[negationslash]R M 3[notdef]3 [parenrightBigg]
, (3.8)
[prime]v1 p2
gv1p2 0 1 + 1[angbracketleft]s[angbracketright] 1vu
g
JHEP11(2014)018
where
g
[negationslash]R =
0
B
B
@
[prime]v2 p2
gv2p2 0 2 + 2[angbracketleft]s[angbracketright] 2vu
g
1
C
C
A
, (3.9)
[prime]v3 p2
gv3p2 0 3 + 3[angbracketleft]s[angbracketright] 3vu
and M 3[notdef]3 is the 3 [notdef] 3 light neutrino majorana mass matrix.
One of the dominant diagrams for the decay ~
~01 ! + is given in gure 4, and the
corresponding decay rate is given by
(~
~01 ! ) em
( 1)2
323
~ . (3.10)
Here we assume, for simplicity, that the charged Higgs and charginos have similar masses MH (m~~
+ i
mH
+ ). The singlino lifetime can be expressed as
(~
~01 ! ) 2 [notdef] 1027sec [parenleftbigg]
MH 105GeV
2 1011 1
2, (3.11)
and if we assume 1 3 [notdef] 106, the desired singlino life time is obtained. The LSP
singlino, as mentioned above, can provide the correct DM abundance.
4 Conclusion
In summary, we have presented several scenarios that can accommodate the 3.5 keV X-ray line in the context of R-parity conserving SUSY. In the MSSM, the LSP neutralino can be massless and the gravitino or axino dark matter of mass around 7 keV can decay into the LSP neutralino and a photon with lifetime 1028 sec. To realize this scenario, we assume
that the soft SUSY breaking MSSM gaugino masses are non-universal and they satisfy
9
the requirement that the determinant of the neutralino mass matrix vanishes at the weak scale. This can always be achieved with a suitable choice of parameters, while keeping the charginos (and second lightest neutralino ~
~02) heavier than 420 GeV to avoid the LHC constraint. A keV mass dark matter is of considerable interest since it can provide potential solutions to the missing satellites problems of the Local Group of Galaxies. The massless bino, however, contributes to Ne and future data should seriously test this scenario. In the context of NMSSM, we consider scenarios where the bino is massless and the dark matter singlino mass is around 7 keV. Within the NMSSM, we also consider quasi-degenerate bino-singlino scenarios where the DM mass scale is O(GeV) or larger. We require, in this scenario, a small mass gap to generate the 3.5 keV X-ray line. In passing, we also consider scenarios where the singlino is the lightest SUSY particle, and it decays via R parity violating couplings which give rise to the 3.5 keV X-ray line.
Acknowledgments
We would like to thank R. Allahverdi, Y. Gao for very useful discussions. This work is supported in part by the DOE Grants Nos. DE-FG02-13ER42020 (B.D.) and DE-FG02-12ER41808 (I.G. and Q.S.). I.G. acknowledges support from the Rustaveli National Science Foundation No. 31/98.
A Two massless neutralinos in the NMSSM
The neutralino mass matrix is given in eq. (3.2) and we seek a solution with two massless neutralinos. Assuming that is an eigenvalue of MN , we can write the characteristic
equation in the form
[notdef]MN I5[notdef] = 5 + A 4 + B 3 + C 2 + D + E = 0, (A.1)
where I5 is the 5 [notdef] 5 identity matrix, and A, B, C, D, E, of course, depend on the entries in MN . It is known that A, B, C, D and E are invariants (under similarity transformations) of
the matrix and, in particular, E is the determinant of MN . We can express the coe cients
in eq. (A.1) in terms of the mass eigenstates:
E = m21m22m23m24m25; D =
n
JHEP11(2014)018
Xi[negationslash]=j[negationslash]=km2i m2j m2k;
Xi
6=j[negationslash]=k[negationslash]=l
m2i m2j m2k m2l; C =
n
Xi[negationslash]=j[negationslash]=km2i m2j A =
5
B =
n
Xi=1m2i. (A.2)
A necessary and su cient condition for any one eigenvalue to be zero is for the determinant of the matrix to be zero (i.e. E = 0). The quintic characteristic equation then reduces to a quadratic one. Proceeding in this fashion, if we now also set D = 0, we will ensure that two eigenvalues of the mass matrix are zero. It is then possible to adjust the parameters to get the desired small mass eigenvalues.
10
Point 1 Point 2 Point 3
M2 (GeV) 550 500 550 (GeV) 550 500 550x (GeV) 0.0001 1 7 [notdef] 106 tan 30 30 50
M1 0.234 1.267 550 3.5 [notdef] 102 0.5 0.5
1010 109 105 m~~01 (GeV) 6.69 [notdef] 1013 1 7 [notdef] 106
~
~01 composition [similarequal] 100%
~B 99% ~B [similarequal] 100%
m~~02 (GeV) 7 [notdef] 106 1 1.08
~
~02 composition [similarequal] 100%
99% mixture m~~03 (GeV) 498 445 550 m~~04 (GeV) 554 505 554 m~~05 (GeV) 605 560 617
Table 1. Three representative solutions.
While the general expression for the the determinant and the coe cient of in the characteristic equation (variously known as the fourth invariant) is rather complicated, the conditions to obtain two massless neutralinos simplies in the limit of large tan . Setting s ! 1 and c ! 0 in the neutralino mass matrix, we obtain the following conditions for
two massless neutralinos,
D = M1M2( 2v2 + 2) 2 x2(M1 + M2)+
2 xm2Z(M1c2W + M2s2W ) + m2Zv2 2 = 0
E = 2M1M2 x2 m2Z 2(M1c2W + M2s2W ) = 0 (A.3) There can, however, be issues while using this approximation because of the large di erences in orders of magnitudes of the various terms. In practice it is much simpler to numerically ne-tune the parameters in the exact expressions to obtain two zero eigenvalues. We are essentially interested in a quasi-degenerate ([lessorsimilar] 1 GeV) bino-singlino mixture. With
small, there is very little mixing between the singlino and the higgsinos, particularly for [greaterorsimilar] 100 GeV (which is needed as previously explained). Furthermore, if we choose M1, 2 x
1 GeV and M2 [greaterorsimilar] 400 GeV, we should naively expect to get the required neutralino masses.
In table 1 we display three representative solutions that correspond to the three scenarios for obtaining the 3.5 keV X-ray line within the NMSSM framework. Point 1 corresponds to a massless bino with a 7 keV singlino. Point 2 shows the quasi-degenerate scenario involving the bino and singlino, with a mass of 1GeV and a mass splitting of 3.5keV. Point 3 describes the scenario in which the singlino is 7 keV and all other neutralinos are heavy.
As far as the MSSM case is concerned, things are even simpler. For example, one could take, tan = 30, M2 = = 550 GeV, M1 = 0.23 GeV where, M1 is chosen to obtain a massless bino. The masses of the three heavier neutralinos are 499 GeV, 555 GeV and 606 GeV.
11
JHEP11(2014)018
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/
Web End =CC-BY 4.0 ), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1] E. Bulbul et al., Detection of an unidentied emission line in the stacked X-ray spectrum of
galaxy clusters, http://dx.doi.org/10.1088/0004-637X/789/1/13
Web End =Astrophys. J. 789 (2014) 13 [http://arxiv.org/abs/1402.2301
Web End =arXiv:1402.2301 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2301
Web End =INSPIRE ].[2] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, An unidentied line in X-ray
spectra of the Andromeda galaxy and Perseus galaxy cluster, http://arxiv.org/abs/1402.4119
Web End =arXiv:1402.4119 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4119
Web End =INSPIRE ].[3] S. Chakraborty, D.K. Ghosh and S. Roy, 7 keV sterile neutrino dark matter in U(1)R lepton number model, http://arxiv.org/abs/1405.6967
Web End =arXiv:1405.6967 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6967
Web End =INSPIRE ].
[4] K. Nakayama, F. Takahashi and T.T. Yanagida, Extra light fermions in E6-inspired models
and the 3.5 keV X-ray line signal, http://dx.doi.org/10.1016/j.physletb.2014.08.061
Web End =Phys. Lett. B 737 (2014) 311 [http://arxiv.org/abs/1405.4670
Web End =arXiv:1405.4670 ]
[http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4670
Web End =INSPIRE ].
[5] S. Baek, P. Ko and W.-I. Park, The 3.5 keV X-ray line signature from annihilating and
decaying dark matter in Weinberg model, http://arxiv.org/abs/1405.3730
Web End =arXiv:1405.3730 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3730
Web End =INSPIRE ].[6] J.P. Conlon and F.V. Day, 3.55 keV photon lines from axion to photon conversion in the
Milky Way and M31, http://arxiv.org/abs/1404.7741
Web End =arXiv:1404.7741 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7741
Web End =INSPIRE ].[7] H. Okada and T. Toma, 3.55 keV X-ray line signal from excited dark matter in radiative
neutrino model, http://dx.doi.org/10.1016/j.physletb.2014.08.046
Web End =Phys. Lett. B 737 (2014) 162 [http://arxiv.org/abs/1404.4795
Web End =arXiv:1404.4795 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4795
Web End =INSPIRE ].[8] J.M. Cline, Y. Farzan, Z. Liu, G.D. Moore and W. Xue, 3.5 keV X-rays as the 21 cm line
of dark atoms and a link to light sterile neutrinos, http://dx.doi.org/10.1103/PhysRevD.89.121302
Web End =Phys. Rev. D 89 (2014) 121302
[http://arxiv.org/abs/1404.3729
Web End =arXiv:1404.3729 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3729
Web End =INSPIRE ].[9] K.P. Modak, 3.5 keV X-ray line signal from decay of right-handed neutrino due to transition
magnetic moment, http://arxiv.org/abs/1404.3676
Web End =arXiv:1404.3676 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3676
Web End =INSPIRE ].[10] K.S. Babu and R.N. Mohapatra, 7 keV scalar dark matter and the anomalous galactic X-ray
spectrum, http://dx.doi.org/10.1103/PhysRevD.89.115011
Web End =Phys. Rev. D 89 (2014) 115011 [http://arxiv.org/abs/1404.2220
Web End =arXiv:1404.2220 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2220
Web End =INSPIRE ].[11] E. Dudas, L. Heurtier and Y. Mambrini, Generating X-ray lines from annihilating dark
matter, http://dx.doi.org/10.1103/PhysRevD.90.035002
Web End =Phys. Rev. D 90 (2014) 035002 [http://arxiv.org/abs/1404.1927
Web End =arXiv:1404.1927 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1927
Web End =INSPIRE ].[12] F.S. Queiroz and K. Sinha, The poker face of the Majoron dark matter model: LUX to keV
line, http://dx.doi.org/10.1016/j.physletb.2014.06.016
Web End =Phys. Lett. B 735 (2014) 69 [http://arxiv.org/abs/1404.1400
Web End =arXiv:1404.1400 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1400
Web End =INSPIRE ].[13] Z. Kang, P. Ko, T. Li and Y. Liu, Natural X-ray lines from the low scale supersymmetry
breaking, http://arxiv.org/abs/1403.7742
Web End =arXiv:1403.7742 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.7742
Web End =INSPIRE ].[14] K. Nakayama, F. Takahashi and T.T. Yanagida, Anomaly-free avor models for
Nambu-Goldstone bosons and the 3.5 keV X-ray line signal, http://dx.doi.org/10.1016/j.physletb.2014.05.035
Web End =Phys. Lett. B 734 (2014) 178
[http://arxiv.org/abs/1403.7390
Web End =arXiv:1403.7390 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.7390
Web End =INSPIRE ].[15] R. Allahverdi, B. Dutta and Y. Gao, keV photon emission from light nonthermal dark
matter, http://dx.doi.org/10.1103/PhysRevD.89.127305
Web End =Phys. Rev. D 89 (2014) 127305 [http://arxiv.org/abs/1403.5717
Web End =arXiv:1403.5717 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5717
Web End =INSPIRE ].[16] M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel, A 3.55 keV photon line and its
morphology from a 3.55 keV ALP line, http://dx.doi.org/10.1103/PhysRevD.90.023540
Web End =Phys. Rev. D 90 (2014) 023540 [http://arxiv.org/abs/1403.2370
Web End =arXiv:1403.2370 ]
[http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2370
Web End =INSPIRE ].
12
JHEP11(2014)018
[17] S. Baek and H. Okada, 7 keV dark matter as X-ray line signal in radiative neutrino model,
http://arxiv.org/abs/1403.1710
Web End =arXiv:1403.1710 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1710
Web End =INSPIRE ].[18] K. Nakayama, F. Takahashi and T.T. Yanagida, The 3.5 keV X-ray line signal from decaying
moduli with low cuto scale, http://dx.doi.org/10.1016/j.physletb.2014.06.061
Web End =Phys. Lett. B 735 (2014) 338 [http://arxiv.org/abs/1403.1733
Web End =arXiv:1403.1733 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1733
Web End =INSPIRE ].[19] M.T. Frandsen, F. Sannino, I.M. Shoemaker and O. Svendsen, X-ray lines from dark matter:
the good, the bad and the unlikely, http://dx.doi.org/10.1088/1475-7516/2014/05/033
Web End =JCAP 05 (2014) 033 [http://arxiv.org/abs/1403.1570
Web End =arXiv:1403.1570 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1570
Web End =INSPIRE ].[20] R. Krall, M. Reece and T. Roxlo, E ective eld theory and keV lines from dark matter,
http://dx.doi.org/10.1088/1475-7516/2014/09/007
Web End =JCAP 09 (2014) 007 [http://arxiv.org/abs/1403.1240
Web End =arXiv:1403.1240 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1240
Web End =INSPIRE ].[21] K.N. Abazajian, Resonantly-produced 7 keV sterile neutrino dark matter models and the
properties of Milky Way satellites, http://dx.doi.org/10.1103/PhysRevLett.112.161303
Web End =Phys. Rev. Lett. 112 (2014) 161303 [http://arxiv.org/abs/1403.0954
Web End =arXiv:1403.0954 ]
[http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0954
Web End =INSPIRE ].
[22] H.M. Lee, S.C. Park and W.-I. Park, Cluster X-ray line at 3.5 keV from axion-like dark
matter, http://dx.doi.org/10.1140/epjc/s10052-014-3062-5
Web End =Eur. Phys. J. C 74 (2014) 3062 [http://arxiv.org/abs/1403.0865
Web End =arXiv:1403.0865 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0865
Web End =INSPIRE ].[23] J. Jaeckel, J. Redondo and A. Ringwald, A 3.55 keV hint for decaying axion-like particle dark
matter, http://dx.doi.org/10.1103/PhysRevD.89.103511
Web End =Phys. Rev. D 89 (2014) 103511 [http://arxiv.org/abs/1402.7335
Web End =arXiv:1402.7335 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D89,103511
Web End =INSPIRE ].[24] T. Higaki, K.S. Jeong and F. Takahashi, The 7 keV axion dark matter and the X-ray line
signal, http://dx.doi.org/10.1016/j.physletb.2014.04.007
Web End =Phys. Lett. B 733 (2014) 25 [http://arxiv.org/abs/1402.6965
Web End =arXiv:1402.6965 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B733,25
Web End =INSPIRE ].[25] D.P. Finkbeiner and N. Weiner, An X-ray line from exciting dark matter, http://arxiv.org/abs/1402.6671
Web End =arXiv:1402.6671
[http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6671
Web End =INSPIRE ].
[26] H. Ishida, K.S. Jeong and F. Takahashi, 7 keV sterile neutrino dark matter from split avor
mechanism, http://dx.doi.org/10.1016/j.physletb.2014.03.044
Web End =Phys. Lett. B 732 (2014) 196 [http://arxiv.org/abs/1402.5837
Web End =arXiv:1402.5837 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B732,196
Web End =INSPIRE ].[27] J.-C. Park, S.C. Park and K. Kong, X-ray line signal from 7 keV axino dark matter decay,
http://dx.doi.org/10.1016/j.physletb.2014.04.037
Web End =Phys. Lett. B 733 (2014) 217 [http://arxiv.org/abs/1403.1536
Web End =arXiv:1403.1536 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1536
Web End =INSPIRE ].[28] K.-Y. Choi and O. Seto, X-ray line signal from decaying axino warm dark matter, http://dx.doi.org/10.1016/j.physletb.2014.06.008
Web End =Phys. Lett.
http://dx.doi.org/10.1016/j.physletb.2014.06.008
Web End =B 735 (2014) 92 [http://arxiv.org/abs/1403.1782
Web End =arXiv:1403.1782 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1782
Web End =INSPIRE ].[29] S.P. Liew, Axino dark matter in light of an anomalous X-ray line, http://dx.doi.org/10.1088/1475-7516/2014/05/044
Web End =JCAP 05 (2014) 044
[http://arxiv.org/abs/1403.6621
Web End =arXiv:1403.6621 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6621
Web End =INSPIRE ].[30] S.V. Demidov and D.S. Gorbunov, SUSY in the sky or a keV signature of sub-GeV gravitino
dark matter, http://arxiv.org/abs/1404.1339
Web End =arXiv:1404.1339 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1339
Web End =INSPIRE ].[31] N.E. Bomark and L. Roszkowski, 3.5 keV X-ray line from decaying gravitino dark matter,
http://dx.doi.org/10.1103/PhysRevD.90.011701
Web End =Phys. Rev. D 90 (2014) 011701 [http://arxiv.org/abs/1403.6503
Web End =arXiv:1403.6503 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6503
Web End =INSPIRE ].[32] C. Kolda and J. Unwin, X-ray lines from R-parity violating decays of keV sparticles, http://dx.doi.org/10.1103/PhysRevD.90.023535
Web End =Phys.
http://dx.doi.org/10.1103/PhysRevD.90.023535
Web End =Rev. D 90 (2014) 023535 [http://arxiv.org/abs/1403.5580
Web End =arXiv:1403.5580 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5580
Web End =INSPIRE ].[33] A. Bartl, H. Fraas, W. Majerotto and N. Oshimo, The neutralino mass matrix in the
minimal supersymmetric model, http://dx.doi.org/10.1103/PhysRevD.40.1594
Web End =Phys. Rev. D 40 (1989) 1594 [http://inspirehep.net/search?p=find+J+Phys.Rev.,D40,1594
Web End =INSPIRE ].[34] I. Gogoladze, J.D. Lykken, C. Macesanu and S. Nandi, Implications of a massless neutralino
for neutrino physics, http://dx.doi.org/10.1103/PhysRevD.68.073004
Web End =Phys. Rev. D 68 (2003) 073004 [http://arxiv.org/abs/hep-ph/0211391
Web End =hep-ph/0211391 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D68,073004
Web End =INSPIRE ].[35] H.K. Dreiner et al., Mass bounds on a very light neutralino, http://dx.doi.org/10.1140/epjc/s10052-009-1042-y
Web End =Eur. Phys. J. C 62 (2009) 547
[http://arxiv.org/abs/0901.3485
Web End =arXiv:0901.3485 ] [http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C62,547
Web End =INSPIRE ].[36] ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in
nal states with two leptons and missing transverse momentum in pp collisions at
ps = 8 TeV with the ATLAS detector, http://dx.doi.org/10.1007/JHEP05(2014)071
Web End =JHEP 05 (2014) 071 [http://arxiv.org/abs/1403.5294
Web End =arXiv:1403.5294 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5294
Web End =INSPIRE ].
13
JHEP11(2014)018
[37] ATLAS collaboration, Search for direct production of charginos and neutralinos in events
with three leptons and missing transverse momentum in ps = 8 TeV pp collisions with the
ATLAS detector, http://dx.doi.org/10.1007/JHEP04(2014)169
Web End =JHEP 04 (2014) 169 [http://arxiv.org/abs/1402.7029
Web End =arXiv:1402.7029 ] [http://inspirehep.net/search?p=find+J+JHEP,1404,169
Web End =INSPIRE ].[38] G.R. Blumenthal, H. Pagels and J.R. Primack, Galaxy formation by dissipationless particles
heavier than neutrinos, http://dx.doi.org/10.1038/299037a0
Web End =Nature 299 (1982) 37 [http://inspirehep.net/search?p=find+J+Nature,299,37
Web End =INSPIRE ].[39] P. Bode, J.P. Ostriker and N. Turok, Halo formation in warm dark matter models,
http://dx.doi.org/10.1086/321541
Web End =Astrophys. J. 556 (2001) 93 [http://arxiv.org/abs/astro-ph/0010389
Web End =astro-ph/0010389 ] [http://inspirehep.net/search?p=find+EPRINT+astro-ph/0010389
Web End =INSPIRE ].[40] A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings
and D-brane models, http://dx.doi.org/10.1103/PhysRevD.64.125010
Web End =Phys. Rev. D 64 (2001) 125010 [http://arxiv.org/abs/hep-ph/0003186
Web End =hep-ph/0003186 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D64,125010
Web End =INSPIRE ].[41] B. Ananthanarayan and P.N. Pandita, Sparticle mass spectrum in grand unied theories, http://dx.doi.org/10.1142/S0217751X07036889
Web End =Int.
http://dx.doi.org/10.1142/S0217751X07036889
Web End =J. Mod. Phys. A 22 (2007) 3229 [http://arxiv.org/abs/0706.2560
Web End =arXiv:0706.2560 ] [http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A22,3229
Web End =INSPIRE ].[42] S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Non-universal gaugino masses: a
signal-based analysis for the Large Hadron Collider, http://dx.doi.org/10.1088/1126-6708/2007/10/080
Web End =JHEP 10 (2007) 080 [http://arxiv.org/abs/0708.2427
Web End =arXiv:0708.2427 ]
[http://inspirehep.net/search?p=find+J+JHEP,0710,080
Web End =INSPIRE ].
[43] S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unied
models, http://dx.doi.org/10.1103/PhysRevD.79.095019
Web End =Phys. Rev. D 79 (2009) 095019 [http://arxiv.org/abs/0903.3568
Web End =arXiv:0903.3568 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D79,095019
Web End =INSPIRE ].[44] J. Chakrabortty and A. Raychaudhuri, A note on dimension-5 operators in GUTs and their
impact, http://dx.doi.org/10.1016/j.physletb.2009.01.065
Web End =Phys. Lett. B 673 (2009) 57 [http://arxiv.org/abs/0812.2783
Web End =arXiv:0812.2783 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B673,57
Web End =INSPIRE ].[45] S.P. Martin, Nonuniversal gaugino masses and seminatural supersymmetry in view of the
Higgs boson discovery, http://dx.doi.org/10.1103/PhysRevD.89.035011
Web End =Phys. Rev. D 89 (2014) 035011 [http://arxiv.org/abs/1312.0582
Web End =arXiv:1312.0582 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0582
Web End =INSPIRE ].[46] M.A. Ajaib, I. Gogoladze and Q. Sha, Sparticle spectroscopy from SO(10) GUT with a
unied Higgs sector, http://dx.doi.org/10.1103/PhysRevD.88.095019
Web End =Phys. Rev. D 88 (2013) 095019 [http://arxiv.org/abs/1307.4882
Web End =arXiv:1307.4882 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D88,095019
Web End =INSPIRE ].[47] K.S. Babu, I. Gogoladze, P. Nath and R.M. Syed, A unied framework for symmetry
breaking in SO(10), http://dx.doi.org/10.1103/PhysRevD.72.095011
Web End =Phys. Rev. D 72 (2005) 095011 [http://arxiv.org/abs/hep-ph/0506312
Web End =hep-ph/0506312 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D72,095011
Web End =INSPIRE ].[48] K.S. Babu, I. Gogoladze, P. Nath and R.M. Syed, Fermion mass generation in SO(10) with a
unied Higgs sector, http://dx.doi.org/10.1103/PhysRevD.74.075004
Web End =Phys. Rev. D 74 (2006) 075004 [http://arxiv.org/abs/hep-ph/0607244
Web End =hep-ph/0607244 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.,D74,075004
Web End =INSPIRE ].[49] A. Anandakrishnan and S. Raby, Yukawa unication predictions with e ective mirage
mediation, http://dx.doi.org/10.1103/PhysRevLett.111.211801
Web End =Phys. Rev. Lett. 111 (2013) 211801 [http://arxiv.org/abs/1303.5125
Web End =arXiv:1303.5125 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,111,211801
Web End =INSPIRE ].[50] P. Meade, N. Seiberg and D. Shih, General gauge mediation, http://dx.doi.org/10.1143/PTPS.177.143
Web End =Prog. Theor. Phys. Suppl. 177
http://dx.doi.org/10.1143/PTPS.177.143
Web End =(2009) 143 [http://arxiv.org/abs/0801.3278
Web End =arXiv:0801.3278 ] [http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.Suppl.,177,143
Web End =INSPIRE ].[51] M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, http://dx.doi.org/10.1088/1126-6708/2009/03/016
Web End =JHEP 03
http://dx.doi.org/10.1088/1126-6708/2009/03/016
Web End =(2009) 016 [http://arxiv.org/abs/0812.3668
Web End =arXiv:0812.3668 ] [http://inspirehep.net/search?p=find+J+JHEP,0903,016
Web End =INSPIRE ].[52] S.P. Martin, A supersymmetry primer, http://dx.doi.org/10.1142/9789814307505_0001
Web End =Adv. Ser. Direct. High Energy Phys. 21 (2010) 1
[http://arxiv.org/abs/hep-ph/9709356
Web End =hep-ph/9709356 ] [http://inspirehep.net/search?p=find+EPRINT+hep-ph/9709356
Web End =INSPIRE ].[53] ATLAS collaboration, Observation of a new particle in the search for the standard model
Higgs boson with the ATLAS detector at the LHC, http://dx.doi.org/10.1016/j.physletb.2012.08.020
Web End =Phys. Lett. B 716 (2012) 1
[http://arxiv.org/abs/1207.7214
Web End =arXiv:1207.7214 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B716,1
Web End =INSPIRE ].[54] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC, http://dx.doi.org/10.1016/j.physletb.2012.08.021
Web End =Phys. Lett. B 716 (2012) 30 [http://arxiv.org/abs/1207.7235
Web End =arXiv:1207.7235 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B716,30
Web End =INSPIRE ].[55] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic
contributions to the muon g 2 and to (M2Z), http://dx.doi.org/10.1140/epjc/s10052-010-1515-z
Web End =Eur. Phys. J. C 71 (2011) 1515 [http://dx.doi.org/10.1140/epjc/s10052-012-1874-8
Web End =Erratum
http://dx.doi.org/10.1140/epjc/s10052-012-1874-8
Web End =ibid. C 72 (2012) 1874 ] [http://arxiv.org/abs/1010.4180
Web End =arXiv:1010.4180 ] [http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C71,1515
Web End =INSPIRE ].
14
JHEP11(2014)018
[56] K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g 2) and (M2Z)
re-evaluated using new precise data, http://dx.doi.org/10.1088/0954-3899/38/8/085003
Web End =J. Phys. G 38 (2011) 085003 [http://arxiv.org/abs/1105.3149
Web End =arXiv:1105.3149 ]
[http://inspirehep.net/search?p=find+J+J.Phys.,G38,085003
Web End =INSPIRE ].
[57] I. Gogoladze, F. Nasir, Q. Sha and C.S. Un, Nonuniversal gaugino masses and muon g 2,
http://dx.doi.org/10.1103/PhysRevD.90.035008
Web End =Phys. Rev. D 90 (2014) 035008 [http://arxiv.org/abs/1403.2337
Web End =arXiv:1403.2337 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2337
Web End =INSPIRE ].[58] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological
parameters, http://dx.doi.org/10.1051/0004-6361/201321591
Web End =Astron. Astrophys. (2014) [http://arxiv.org/abs/1303.5076
Web End =arXiv:1303.5076 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5076
Web End =INSPIRE ].[59] A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space
Telescope and Wide Field Camera 3, http://dx.doi.org/10.1088/0004-637X/730/2/119
Web End =Astrophys. J. 730 (2011) 119 [http://dx.doi.org/10.1088/0004-637X/732/2/129
Web End =Erratum ibid. 732 (2011)
http://dx.doi.org/10.1088/0004-637X/732/2/129
Web End =129 ] [http://arxiv.org/abs/1103.2976
Web End =arXiv:1103.2976 ] [http://inspirehep.net/search?p=find+J+Astrophys.J.,730,119
Web End =INSPIRE ].[60] M. Wyman, D.H. Rudd, R.A. Vanderveld and W. Hu, Neutrinos Help Reconcile Planck
Measurements with the Local Universe, http://dx.doi.org/10.1103/PhysRevLett.112.051302
Web End =Phys. Rev. Lett. 112 (2014) 051302
[http://arxiv.org/abs/1307.7715
Web End =arXiv:1307.7715 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,112,051302
Web End =INSPIRE ].[61] BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree
Angular Scales by BICEP2, http://dx.doi.org/10.1103/PhysRevLett.112.241101
Web End =Phys. Rev. Lett. 112 (2014) 241101 [http://arxiv.org/abs/1403.3985
Web End =arXiv:1403.3985 ]
[http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3985
Web End =INSPIRE ].
[62] C. Dvorkin, M. Wyman, D.H. Rudd and W. Hu, Neutrinos help reconcile Planck
measurements with both Early and Local Universe, http://dx.doi.org/10.1103/PhysRevD.90.083503
Web End =Phys. Rev. D 90 (2014) 083503
[http://arxiv.org/abs/1403.8049
Web End =arXiv:1403.8049 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.8049
Web End =INSPIRE ].[63] J.-F. Zhang, Y.-H. Li and X. Zhang, Cosmological constraints on neutrinos after BICEP2,
http://dx.doi.org/10.1140/epjc/s10052-014-2954-8
Web End =Eur. Phys. J. C 74 (2014) 2954 [http://arxiv.org/abs/1404.3598
Web End =arXiv:1404.3598 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3598
Web End =INSPIRE ].[64] G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, http://dx.doi.org/10.1016/S0370-1573(99)00042-3
Web End =Phys.
http://dx.doi.org/10.1016/S0370-1573(99)00042-3
Web End =Rept. 322 (1999) 419 [http://arxiv.org/abs/hep-ph/9801271
Web End =hep-ph/9801271 ] [http://inspirehep.net/search?p=find+J+Phys.Rept.,322,419
Web End =INSPIRE ].[65] M. Grefe, Unstable gravitino dark matter prospects for indirect and direct detection,
http://arxiv.org/abs/1111.6779
Web End =arXiv:1111.6779 [http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6779
Web End =INSPIRE ].[66] G. Dvali, Black holes and large-N species solution to the hierarchy problem, http://dx.doi.org/10.1002/prop.201000009
Web End =Fortsch. Phys.
http://dx.doi.org/10.1002/prop.201000009
Web End =58 (2010) 528 [http://arxiv.org/abs/0706.2050
Web End =arXiv:0706.2050 ] [http://inspirehep.net/search?p=find+J+Fortsch.Phys.,58,528
Web End =INSPIRE ].[67] R. Brustein, G. Dvali and G. Veneziano, A bound on the e ective gravitational coupling from
semiclassical black holes, http://dx.doi.org/10.1088/1126-6708/2009/10/085
Web End =JHEP 10 (2009) 085 [http://arxiv.org/abs/0907.5516
Web End =arXiv:0907.5516 ] [http://inspirehep.net/search?p=find+J+JHEP,0910,085
Web End =INSPIRE ].[68] G. Dvali, Black hole constraints on modications of gravity,
http://darkuniverse.uni-hd.de/pub/Main/HD_TRR332009_program/dvali.pdf
Web End =http://darkuniverse.uni-hd.de/pub/Main/HD TRR332009 program/dvali.pdf .[69] G. Dvali, Microscopic gravity and particle physics,
http://www.mpi-hd.mpg.de/lin/seminar_theory/talks/dvali.pptx
Web End =http://www.mpi-hd.mpg.de/lin/seminar theory/talks/dvali.pptx .[70] M. Bolz, A. Brandenburg and W. Buchmller, Thermal production of gravitinos, http://dx.doi.org/10.1016/S0550-3213(01)00132-8
Web End =Nucl. Phys.
http://dx.doi.org/10.1016/S0550-3213(01)00132-8
Web End =B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [http://arxiv.org/abs/hep-ph/0012052
Web End =hep-ph/0012052 ] [http://inspirehep.net/search?p=find+J+Nucl.Phys.,B606,518
Web End =INSPIRE ].[71] T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable
gravitino, http://dx.doi.org/10.1016/0370-2693(93)91434-O
Web End =Phys. Lett. B 303 (1993) 289 [http://inspirehep.net/search?p=find+J+Phys.Lett.,B303,289
Web End =INSPIRE ].[72] R. Allahverdi, B. Dutta and K. Sinha, Baryogenesis and late-decaying moduli, http://dx.doi.org/10.1103/PhysRevD.82.035004
Web End =Phys. Rev. D
http://dx.doi.org/10.1103/PhysRevD.82.035004
Web End =82 (2010) 035004 [http://arxiv.org/abs/1005.2804
Web End =arXiv:1005.2804 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2804
Web End =INSPIRE ].[73] K.S. Babu, R.N. Mohapatra and S. Nasri, Post-sphaleron baryogenesis, http://dx.doi.org/10.1103/PhysRevLett.97.131301
Web End =Phys. Rev. Lett. 97
http://dx.doi.org/10.1103/PhysRevLett.97.131301
Web End =(2006) 131301 [http://arxiv.org/abs/hep-ph/0606144
Web End =hep-ph/0606144 ] [http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,97,131301
Web End =INSPIRE ].[74] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, http://dx.doi.org/10.1103/PhysRevLett.38.1440
Web End =Phys. Rev. Lett.
http://dx.doi.org/10.1103/PhysRevLett.38.1440
Web End =38 (1977) 1440 [http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,38,1440
Web End =INSPIRE ].
15
JHEP11(2014)018
[75] J.E. Kim and M.-S. Seo, Mixing of axino and goldstino and axino mass, http://dx.doi.org/10.1016/j.nuclphysb.2012.06.018
Web End =Nucl. Phys. B 864
http://dx.doi.org/10.1016/j.nuclphysb.2012.06.018
Web End =(2012) 296 [http://arxiv.org/abs/1204.5495
Web End =arXiv:1204.5495 ] [http://inspirehep.net/search?p=find+J+Nucl.Phys.,B864,296
Web End =INSPIRE ].[76] H.P. Nilles and S. Raby, Supersymmetry and the strong CP problem, http://dx.doi.org/10.1016/0550-3213(82)90547-8
Web End =Nucl. Phys. B 198
http://dx.doi.org/10.1016/0550-3213(82)90547-8
Web End =(1982) 102 [http://inspirehep.net/search?p=find+J+Nucl.Phys.,B198,102
Web End =INSPIRE ].[77] K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, http://dx.doi.org/10.1016/0550-3213(91)90355-2
Web End =Nucl. Phys.
http://dx.doi.org/10.1016/0550-3213(91)90355-2
Web End =B 358 (1991) 447 [http://inspirehep.net/search?p=find+J+Nucl.Phys.,B358,447
Web End =INSPIRE ].[78] L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, http://dx.doi.org/10.1088/1126-6708/2001/05/033
Web End =JHEP 05 (2001)
http://dx.doi.org/10.1088/1126-6708/2001/05/033
Web End =033 [http://arxiv.org/abs/hep-ph/0101009
Web End =hep-ph/0101009 ] [http://inspirehep.net/search?p=find+J+JHEP,0105,033
Web End =INSPIRE ].[79] K.-Y. Choi, J.E. Kim and L. Roszkowski, Review of axino dark matter, http://dx.doi.org/10.3938/jkps.63.1685
Web End =J. Korean Phys. Soc.
http://dx.doi.org/10.3938/jkps.63.1685
Web End =63 (2013) 1685 [http://arxiv.org/abs/1307.3330
Web End =arXiv:1307.3330 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.3330
Web End =INSPIRE ].[80] P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological
measurements, http://arxiv.org/abs/hep-th/0409059
Web End =hep-th/0409059 [http://inspirehep.net/search?p=find+EPRINT+hep-th/0409059
Web End =INSPIRE ].[81] M. Dine and W. Fischler, The not so harmless axion, http://dx.doi.org/10.1016/0370-2693(83)90639-1
Web End =Phys. Lett. B 120 (1983) 137
[http://inspirehep.net/search?p=find+J+Phys.Lett.,B120,137
Web End =INSPIRE ].
[82] G. Lazarides, C. Panagiotakopoulos and Q. Sha, Relaxing the cosmological bound on axions,
http://dx.doi.org/10.1016/0370-2693(87)90115-8
Web End =Phys. Lett. B 192 (1987) 323 [http://inspirehep.net/search?p=find+J+Phys.Lett.,B192,323
Web End =INSPIRE ].[83] G. Lazarides, R.K. Schaefer, D. Seckel and Q. Sha, Dilution of cosmological axions by
entropy production, http://dx.doi.org/10.1016/0550-3213(90)90244-8
Web End =Nucl. Phys. B 346 (1990) 193 [http://inspirehep.net/search?p=find+J+Nucl.Phys.,B346,193
Web End =INSPIRE ].[84] M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on
the Peccei-Quinn scale?, http://dx.doi.org/10.1016/0370-2693(96)00743-5
Web End =Phys. Lett. B 383 (1996) 313 [http://arxiv.org/abs/hep-ph/9510461
Web End =hep-ph/9510461 ] [http://inspirehep.net/search?p=find+J+Phys.Lett.,B383,313
Web End =INSPIRE ].[85] J.P. Conlon, The QCD axion and moduli stabilisation, http://dx.doi.org/10.1088/1126-6708/2006/05/078
Web End =JHEP 05 (2006) 078
[http://arxiv.org/abs/hep-th/0602233
Web End =hep-th/0602233 ] [http://inspirehep.net/search?p=find+J+JHEP,0605,078
Web End =INSPIRE ].[86] P. Svrek and E. Witten, Axions in string theory, http://dx.doi.org/10.1088/1126-6708/2006/06/051
Web End =JHEP 06 (2006) 051 [http://arxiv.org/abs/hep-th/0605206
Web End =hep-th/0605206 ]
[http://inspirehep.net/search?p=find+J+JHEP,0606,051
Web End =INSPIRE ].
[87] M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy
phenomenology, http://dx.doi.org/10.1007/JHEP10(2012)146
Web End =JHEP 10 (2012) 146 [http://arxiv.org/abs/1206.0819
Web End =arXiv:1206.0819 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0819
Web End =INSPIRE ].[88] J. McDonald and N. Sahu, keV warm dark matter via the supersymmetric Higgs portal, http://dx.doi.org/10.1103/PhysRevD.79.103523
Web End =Phys.
http://dx.doi.org/10.1103/PhysRevD.79.103523
Web End =Rev. D 79 (2009) 103523 [http://arxiv.org/abs/0809.0247
Web End =arXiv:0809.0247 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0247
Web End =INSPIRE ].[89] U. Ellwanger and C. Hugonie, Neutralino cascades in the (M + 1)SSM, http://dx.doi.org/10.1007/s100520050316
Web End =Eur. Phys. J. C 5
http://dx.doi.org/10.1007/s100520050316
Web End =(1998) 723 [http://arxiv.org/abs/hep-ph/9712300
Web End =hep-ph/9712300 ] [http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C5,723
Web End =INSPIRE ].[90] B.W. Lee and R.E. Shrock, Natural suppression of symmetry violation in gauge theories:
muon-lepton and electron lepton number nonconservation, http://dx.doi.org/10.1103/PhysRevD.16.1444
Web End =Phys. Rev. D 16 (1977) 1444
[http://inspirehep.net/search?p=find+J+Phys.Rev.,D16,1444
Web End =INSPIRE ].
[91] H.E. Haber and D. Wyler, Radiative neutralino decay, http://dx.doi.org/10.1016/0550-3213(89)90143-0
Web End =Nucl. Phys. B 323 (1989) 267
[http://inspirehep.net/search?p=find+J+Nucl.Phys.,B323,267
Web End =INSPIRE ].
[92] H. Baer and T. Krupovnickas, Radiative neutralino decay in supersymmetric models, http://dx.doi.org/10.1088/1126-6708/2002/09/038
Web End =JHEP
http://dx.doi.org/10.1088/1126-6708/2002/09/038
Web End =09 (2002) 038 [http://arxiv.org/abs/hep-ph/0208277
Web End =hep-ph/0208277 ] [http://inspirehep.net/search?p=find+EPRINT+hep-ph/0208277
Web End =INSPIRE ].[93] R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: baryon-dark matter coincidence from
branchings in moduli decay, http://dx.doi.org/10.1103/PhysRevD.83.083502
Web End =Phys. Rev. D 83 (2011) 083502 [http://arxiv.org/abs/1011.1286
Web End =arXiv:1011.1286 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1286
Web End =INSPIRE ].[94] R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Nonthermal dark matter in string
compactications, http://dx.doi.org/10.1103/PhysRevD.88.095015
Web End =Phys. Rev. D 88 (2013) 095015 [http://arxiv.org/abs/1307.5086
Web End =arXiv:1307.5086 ] [http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5086
Web End =INSPIRE ].
16
JHEP11(2014)018
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
SISSA, Trieste, Italy 2014
Abstract
Abstract
We present some R-parity conserving supersymmetric models which can accommodate the 3.5 keV X-ray line reported in recent spectral studies of the Perseus galaxy cluster and the Andromeda galaxy. Within the Minimal Supersymmetric Standard Model (MSSM) framework, the dark matter (DM) gravitino (or the axino) with mass of around 7 keV decays into a massless neutralino (bino) and a photon with lifetime 10^sup 28^ sec. The massless bino contributes to the effective number of neutrino species N ^sub eff^ and future data will test this prediction. In the context of NMSSM, we first consider scenarios where the bino is massless and the singlino mass is around 7 keV. We also consider quasi-degenerate bino-singlino scenarios where the mass scale of DM particles are O(GeV) or larger. In such a scenario we require the mass gap to generate the 3.5 keV line. We comment on the possibility of a 7 keV singlino decaying via R parity violating couplings while all other neutralinos are heavy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer